Colored Simultaneous Geometric Embedding

1 Question

Let G_{1}, \ldots, G_{h} be $h>1$ outerplanar graphs having the same number n of vertices. Suppose that the vertices of each graph are colored using $1<k<n$ distinct colors that we denote by the integer numbers $1, \ldots, k$, and suppose that, for each color $i \in\{1, \ldots, k\}$, the number of vertices colored i is the same in $G_{1}, \ldots G_{h}$. We ask whether there exists a set S of n points such that:

- Each $G_{i}(i=1, \ldots, h)$ admits a planar straight-line drawing with the vertices mapped to the points of S.
- For each point $p \in S$, the vertices of $G_{1}, \ldots G_{h}$ mapped to p have the same color.

2 Observations

For $k=1$ the problem above described coincides with the classical simultaneous geometric embedding problem of outerplanar graphs without mapping, and it has been positively answered [1]. For $k=n$ the problem coincides with the classical simultaneous geometric embedding problem of outerplanar graphs with mapping, and it has been negatively answered [1]. The special case of three paths and $k=2$ could be a good starting point.

References

[1] P. Brass, E. Cenek, A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. Kobourov, A. Lubiw, and J. Mitchell. On simultaneous planar graph embeddings. In Proc. 8th Workshop on Algorithms and Data Structures (WADS 2003), Lecture Notes Comput. Sci., pages 243-255, 2003.

