Simultaneous Geometric Embedding of a Path and a Tree

1 Question

Let P be a path and let T be a tree such that P and T have the same set of n vertices (i.e. there is a given mapping between the vertices of P and the vertices of T). We ask whether there exists a set S of n points such that both P and T admit a straight-line planar drawing where the vertices are mapped to the points of S.

2 Observations

It is known that two paths can always be simultaneously embedded [1] while this is not possible in general for two trees [2].

References

[1] P. Brass, E. Cenek, A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. Kobourov, A. Lubiw, and J. Mitchell. On simultaneous planar graph embeddings. In Proc. 8th Workshop on Algorithms and Data Structures (WADS 2003), Lecture Notes Comput. Sci., pages 243-255, 2003.
[2] M. Geyer, M. Kaufmann, and I. Vrt'o. Two trees which are self-intersecting when drawn simultaneously. In Proc. 13th International Symposium on Graph Drawing (GD 2005), volume 3843 of Lecture Notes Comput. Sci., pages 201-210, 2005.

