Point-set Embeddability

General Problem

G is point-set embeddable on P (G admits a planar drawing on P)

bend

Preliminaries

- A planar graph with n vertices is point-set embeddable with no bend per edge on any set of n points in general position iff it is outerplanar
(Gritzman, Mohar, Pach, Pollack, AMM'91)
- A planar graph with n vertices is point-set embeddable with at most two bends per edge on any set of n points (Kaufmann and Wiese, JGAA' 02)
- Two bends are necessary for non-hamiltonian graphs and sets of collinear points

Open Question

Let G be a planar graph with n vertices and let P be any set of n non-collinear points. Does G admit a planar drawing on P with at most one bend per edge?

Observation: if C is a convex curve and if G is a planar graph, G admits a planar drawing with at most one bend per edge on C (Di Giacomo, D., Liotta, Wismath, CGTA'05)

Two bends always suffice

 (Kaufmann and Wiese)

Two bends always suffice

 (Kaufmann and Wiese)

Two bends always suffice

 (Kaufmann and Wiese)

Two bends always suffice (Kaufmann and Wiese)

Two bends always suffice (Kaufmann and Wiese)

Two bends always suffice (Kaufmann and Wiese)

Two bends always suffice

 (Kaufmann and Wiese)

Two bends always suffice (Kaufmann and Wiese)

m

Two bends always suffice

 (Kaufmann and Wiese)

Two bends may be necessary

 for a set of collinear points

A graph has a two-page book embedding iff it is sub-hamiltonian (Bernhart and Kainen, 1979)

