Proximity Drawability

K-weak Delaunay Drawability

Strong, weak, k-weak Delaunay proximity

- $\mathbf{R}(\mathbf{u}, \mathbf{v})$ is a disk containing u and v; it is assumed to be a closed set
- Strong: $(u, v) \in \Gamma \Leftrightarrow \exists R(u, v)$ that does not contain other vertices
- Weak: $(u, v) \in \Gamma \Rightarrow \exists R(u, v)$ that does not contain other vertices
- k-weak: $(u, v) \in \Gamma \Rightarrow \exists R(u, v)$ that can only contain vertices that are at least $(k+1)$-hops from u and v

Strong Delaunay Drawings

Weak Delaunay Drawings

k-weak Delaunay Drawings

$$
k=2
$$

Vertex z has a theoretic distance from u and v greater than k

The general problem

- Characterize k-weak Delaunay drawable graphs
- k-weak Delaunay drawable graphs are called D_{k}-drawable graphs, and the corresponding drawing is called a D_{k}-drawing

Preliminary observations

- $A D_{k}$-drawable graphs is also a D_{k-1}-drawable graphs

-This is both a D_{2}-drawing and a graphs is also a D_{1}-drawing

D2-drawability: Preliminaries

- For planar graphs, the value $k=2$ seems to be particularly interesting
- It is known that every 2-weak Delaunay drawing has a linear number of edges (Pinchasi \& Smorodinsky, SoCG 2004)
- Connected outerplanar graphs are D_{2}-drawable
- Consequence of a paper by Lenhart \& Liotta, GD‘96

D2-drawability: Preliminaries

- Not all planar graphs are D_{2}-drawable.
- Consequence of a paper by Dillencourt, DCG'90

Specific questions

- Are two-terminal series parallel graphs D2-drawable?
- Are bipartite planar graphs D2-drawable?
- Variants: Values of k larger than 2, k-weak Gabriel drawability,

a two-terminal series
parallal graph

Approximating a Minimum Spanning Tree

Minimum Spanning Tree

Minimum weight-drawability of trees

Let T be a tree. Can T be drawn as the minimum spanning tree of the points representing its vertices?

Preliminaries

- Each tree with vertex degree at most 5 can be drawn as a MST (Monma and Suri, DCG'92)
- Each tree having vertex degree greater than 6 is not drawable as a MST (Monma and Suri , DCG'92)
- For trees with maximum vertex degree 6 the problem is NP-Hard (Eades and Whitesides, Algorithmica'96)

Question

- Let T be a tree having maximum vertex degree d $(d>5)$. Compute a straight-line drawing of T such that its total edge length is at most $f(d)$ times the total edge length of the MST of the points representing the vertices
- $f(d)$ is a function of d but it does not depend on the size of T

