Proximity Drawability

K-weak Delaunay Drawability

Strong, weak, k-weak Delaunay proximity

• **R(u,v)** is a disk containing u and v; it is assumed to be a closed set

- **Strong**: $(u,v) \in \Gamma \Leftrightarrow \exists R(u,v)$ that does not contain other vertices
- Weak: $(u,v) \in \Gamma \Rightarrow \exists R(u,v)$ that does not contain other vertices
- *k*-weak: $(u,v) \in \Gamma \Rightarrow \exists R(u,v)$ that can only contain vertices that are at least (k+1)-hops from u and v

Strong Delaunay Drawings

Weak Delaunay Drawings

k-weak Delaunay Drawings

Vertex z has a theoretic distance from u and v greater than k

The general problem

• Characterize *k*-weak Delaunay drawable graphs

k-weak Delaunay drawable graphs are called
D_k-drawable graphs, and the corresponding drawing is called a D_k-drawing

Preliminary observations

• A D_k -drawable graphs is also a D_{k-1} -drawable graphs

•This is both a D_2 -drawing and a graphs is also a D_1 -drawing

D2-drawability: Preliminaries

- For planar graphs, the value *k*=2 seems to be particularly interesting
 - It is known that every 2-weak Delaunay drawing has a linear number of edges (Pinchasi & Smorodinsky, SoCG 2004)
- Connected outerplanar graphs are D₂-drawable
 - Consequence of a paper by Lenhart & Liotta, GD'96

D2-drawability: Preliminaries

- Not all planar graphs are D₂-drawable.
 - Consequence of a paper by Dillencourt, DCG'90

Specific questions

- Are two-terminal series parallel graphs D2-drawable?
- Are bipartite planar graphs D2-drawable?
- Variants: Values of k larger than 2, k-weak Gabriel drawability,

a two-terminal series parallal graph

Approximating a Minimum Spanning Tree

Minimum Spanning Tree

Minimum weight-drawability of trees

Let T be a tree. Can T be drawn as the minimum spanning tree of the points representing its vertices?

Preliminaries

- Each tree with vertex degree at most 5 can be drawn as a MST (Monma and Suri, DCG'92)
- Each tree having vertex degree greater than 6 is not drawable as a MST (Monma and Suri, DCG'92)
- For trees with maximum vertex degree 6 the problem is NP-Hard (Eades and Whitesides, Algorithmica'96)

Question

• Let T be a tree having maximum vertex degree d (d > 5). Compute a straight-line drawing of T such that its total edge length is at most f(d) times the total edge length of the MST of the points representing the vertices

f(d) is a function of d but it does not depend on the size of T