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1 Introduction

This document describes some graph drawing problems concerned with the visualization of graphs having a
big number of vertices and edges. To fix terminology, we distinguish between large graph and huge graph.
Namely, we assume that a large graph fits into the main memory and then a drawing algorithm can rely on
a complete knowledge of its vertices and edges. Conversely, a huge graph is so big that it cannot be stored
into the main memory; in this case, a drawing algorithm can handle only a limited portion of the graph at a
time. In the next sections we briefly describe some approaches for the visualization of large and huge graphs,
and suggest the study of specific problems for each approach.

2 Topological Windowing

The topological windowing approach (also called online graph drawing approach) has been introduced in [5, 8]
for the exploration of huge graphs. This model assumes that the user can browse a graph G by iteratively
selecting a specific focus vertex ; the drawing algorithm only knows and visualizes a small portion of the
graph at a time, depending on the current focus vertex and on a limited number of previously selected focus
vertices. More precisely, let k be a fixed positive integer and let Q be a queue of maximum size k. Suppose
that, during the browsing of the graph, Q stores the last k focus vertices selected by the user, including
the current focus vertex, which we denote by v. The portion of the graph that the algorithm knows and
visualizes at each time is called a topological window (or logical frame) and mainly depends on the state of
Q. It is defined as the subgraph of G induced by all vertices of Q plus all the vertices of G that have a
theoretic distance at most h from some vertices of Q, for some fixed positive integer h > 0. We denote by
G(Q, h) such a topological window. For small values of k and h, the topological window will be in general a
relatively small graph.

To move from a topological window to another, the user can select a new focus vertex as one of the
vertices adjacent to the current focus vertex v. In general, two consecutive topological windows have in
common a certain set of vertices and all the edges between these vertices, i.e., they have in common a certain
subgraph G′. In order to preserve the user’s mental map, the drawings of G′ for the two topological windows
should be similar or even identical when possible.

This motivates the following general problem: Let G = (V,E) be a graph and let V ′ ⊂ V . Let G′ be the
subgraph of G induced by V ′ and let D′ be a drawing of G′. Compute a drawing D of G that preserves D′

and that satisfies certain aesthetic requirements. In order to initiate the study of this problem, we pose a
more specific question.

Problem 1 Let G be an outerplanar graph and let V ′ ⊂ V . Let G′ be the subgraph of G induced by V ′ and
let D′ be a straight-line drawing of G′. Compute a planar drawing D of G with a limited number of bends
per edge and such that D′ ⊂ D.
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The fact that G is outerplanar is a reasonably assumption if we are browsing huge graphs that are locally
very sparse (e.g., trees plus a small number of extra edges). The restriction that D′ is straight-line is justified
by the fact that we can imagine to add dummy vertices in place of edge bends.

As a related problem, we mention a recent paper that studies how to complete a straight-line partial
drawing of a tree on a given set of points using a few number of bends per edges [6].

3 Hierarchical Approach

This is an approach used to deal with the high visual complexity of large graphs. The idea is to structure
the graph into a hierarchy of clusters, i.e., subsets of its vertices. Then, the user can visualize the graph
at different levels of detail, by expanding or collapsing each single cluster. The drawing algorithm knows
the whole graph and its clusters, and it should compute a nice layout of the graph, capable to convey the
clustered structure of the graph to the user. Sometimes, clusters are not given as part of the input, and the
drawing algorithm is free to compute a hierarchy of clusters by itself. A graph together with a hierarchy of
clusters is also called a clustered graph.

From a theoretical point of view, one of the most interesting problems concerned with the visualization
of clustered graphs is the so called cluster planarity problem. Roughly speaking, a clustered graph is cluster
planar if it can be drawn with no edge crossings and so that each cluster is represented by a simple closed
region containing all and only the vertices of the cluster (and of course of its subclusters); also, no edge of
the graph can cross the boundary of a cluster region twice.

For the case where any two clusters are either disjoint or properly included one in the other, testing
whether a clustered graph is cluster planar can be done in polynomial time [1, 2, 7] if any cluster induces
a connected subgraph; the time complexity of the testing problem is still unknown if clusters can induce
disconnected subgraphs.

Since in many real world applications clusters at a same level of the hierarchy can intersect, it is reasonable
to extend the definition of cluster planar graph to this case; we speak of overlapping clustered graph and
of overlapping cluster planarity. The formal definition of the problem is given in [4], along with some
preliminary results about testing the cluster planarity if a cluster is allowed to overlap with at most another
cluster at the same level. Many basic problems are still open on this subject. We list a couple of them.

Problem 2 Let G be an overlapping clustered graph containing three clusters that overlap at the same
hierarchy level. Is there any polynomial-time algorithm to test whether G is overlapping cluster planar?

Problem 3 What is the complexity of testing an overlapping clustered graph for cluster planarity in each of
these cases?

� Each cluster induces a connected subgraph;

� Each cluster induces a connected subgraph, and each overlap between clusters induces a connected
subgraph.

Notice that, if the clusters can induce disconnected subgraphs, we think it can be easily proved the
NP-Hardness of the overlapping cluster planarity testing problem, by adopting a reduction similar to the
one used for the NP-Hardness proof of the Hypergraph Planarity problem [9].

4 Filtering

Another possible approach to interact with the visualization of large graphs is to use filtering, i.e. the removal
of some vertices and/or edges in order to reduce the visual complexity of the drawing. Vertex filtering can
be used to reduce the size (in terms of number of vertices) of the graph to be visualized. Edge filtering makes
the graph sparser and allows the use of some classical graph drawing algorithms (e.g. algorithm for trees,
planar graphs,...).
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In general terms, edge filtering works as follows for a graph G = (V,E). The set E is partitioned into k
sets E0, E1, . . . Ek−1, in such a way that each subgraph Gi = (V,Ei) (i = 0, 1, . . . , k− 1) has some structural
properties (e.g. planarity, acyclicity,...) or it has some meaning according to the application context; k
different drawings Γi of the k subgraphs Gi = (V,Ei) (i = 0, 1, . . . , k − 1) are computed. Clearly if the
k drawings Γi are computed independently, the user’s mental map is not preserved. Thus it is natural
to ask that drawings Γi are related in some way. A possible approach is the one based on simultaneous
embeddings. Many variants of simultaneous embedding have been defined, but the general problem can be
stated as follows: compute the drawings Γi in such a way that each vertex has the same position in all the
k drawings and such that each drawing satisfies certain aesthetic requirements. The idea is that the user
can swap from a drawing to another, while maintaining unchanged the positions of the vertices and having
a nice visualization for each subgraph.

A different approach is the multi-view approach. The idea behind multi-view approach is to display the
different drawings placing them side by side. In this case it is not required that vertices have the same
position in all drawings but only that it is easy to find corresponding vertices when drawings are visualized.
To better formalize this idea we introduce the concept of matched drawings.

Let G = {Gi = (V, Ei) | i = 0, . . . , k − 1}, be a set of k planar graphs with the same vertex set. A
matched drawing of G is a set of drawings {Γ0, Γ1, . . . , Γk−1} such that:

� Γi is a planar drawing of Gi;

� For each v ∈ V , points p0(v), p1(v), . . . , pk−1(v) have the same y-coordinate, where pi(v) denotes the
point representing v in Γi.

The following results are proved in [3]:

� There exist two isomorphic 3-connected planar graphs, both with 12 vertices, that are not matched
drawable.

� There exist a 3-connected planar graph and a tree, both with 620 vertices, that are not matched
drawable.

� A planar graph and an unlabeled level planar (ULP) graph are always matched drawable.

� A planar graph and a graph of the family of “carousel graphs” are always matched drawable.

� Two trees are always matched drawable.

We suggest the following open problems.

Problem 4 The technique for pair of trees described in [3] computes drawings that can have exponential
area. Is it possible to compute a matched drawing of a pair of trees with polynomial area bound?

Problem 5 Is it possible to compute matched drawings of a pair of outerplanar graphs?
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degli Studi Roma Tre, 2006.

[2] E. Dahlhaus. A linear time algorithm to recognize clustered graphs and its parallelization. In LATIN’98,
volume 1380 of Lecture Notes in Computer Science, pages 239–248. Springer, 1998.

[3] E. Di Giacomo, W. Didimo, M. J. van Kreveld, G. Liotta, and B. Speckmann. Matched drawings of
planar graphs. In S.-H. Hong, T. Nishizeki, and W. Quan, editors, Graph Drawing, volume 4875 of
Lecture Notes in Computer Science, pages 183–194. Springer, 2007.

3



[4] W. Didimo, F. Giordano, and G. Liotta. Overlapping cluster planarity. Journal of Graph Algorithms
and Applications (special issue of APVIS 2007). to appear.

[5] P. Eades, R. F. Cohen, and M. L. Huang. Online animated graph drawing for web navigation. In G. Di
Battista, editor, Graph Drawing, Rome, Italy, September 18-20, 1997, pages pp. 330–335. Springer, 1998.

[6] G. L. H. M. S. W. Emilio Di Giacomo, Walter Didimo. Point-set embedding of trees with edge constraints.
In Graph Drawing, Rome, Italy, September 18-20, 1997, volume 4875 of Lecture Notes Comput. Sci., pages
pp. 113–124. Springer, 2008.

[7] Q. Feng, R. Cohen, and P. Eades. Planarity for clustered graphs. In ESA’95, volume 979 of Lecture
Notes in Computer Science, pages 213–226. Springer, 1995.

[8] M. L. Huang, P. Eades, and J. Wang. On-line animated visualization of huge graphs using a modified
spring algorithm. Journal of Visual Languages and Computing, 9:623–645, 1998.

[9] D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity of drawing venn diagrams.
Journal of Graph Theory, 11(3):309–325, 1987.

4


