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The planarization problem

Goal: find big planar subgraphs
in nonplanar graphs

Equivalently: delete as little as
possible so the rest is planar

In the version we study, the
planar subgraphs are induced
so we’re deleting as few
vertices as possible to get a
planar graph



What type of result should we look for?

Optimal planarization is known to be NP-hard

Fixed-parameter tractable algorithms are known where the
parameter is the number of deleted vertices [Kawarabayashi 2009]

Our results: worst-case bounds on the number of deleted vertices
as a function of the number of edges

(and planarization algorithms that achieve those bounds)



Previous results

All previous results restrict the input
graph in some way, e.g.:

Triangle-free ⇒ delete m/4 vertices to
get a forest [Alon et al. 2001]

Max degree ∆ ⇒ has a planar induced

subgraph with
3n

∆ + 1
vertices

[Edwards and Farr 2002]

m ≥ 2n ⇒ same formula replacing ∆
by average degree

[Edwards and Farr 2008]
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Good news and bad news

Our results:

Every graph can be planarized by

deleting
m

5.2174
vertices

For some graphs, deleting
m

6
− o(m) vertices is not enough

The same m/6 barrier exists for all
minor-closed graph properties

Ary Scheffer, The Temptation of Christ, 1854



A simple planarization algorithm

While the remaining graph has a nonplanar component:

I If some edge e has an endpoint of degree at most two:

1. Contract e (forming a graph without the low-degree endpoint)
2. Mark the endpoint as being part of the planar output graph
3. Simplify any self-loops and multiple adjacencies formed by the

contraction

I Else, within any nonplanar component:

1. If max degree ≥ 5, let v be a vertex of maximum degree;
otherwise, let v have degree four with a degree-three neighbor
(if such a vertex exists); otherwise, let v be any vertex.

2. Delete v and mark it as not part of the output



Correctness of the algorithm

Contracting and later un-contracting an edge with a degree-one
endpoint, or removing and re-adding isolated vertices, cannot

change planarity of the result

At intermediate steps of the algorithm, degree-two contraction and
simplification replaces series-parallel subgraphs by single edges.

Eventually, either both endpoints of such an edge are kept (and
the whole series-parallel subgraph can be re-expanded) or one

endpoint is deleted (and the rest of the graph is safe to re-add)



Proof that algorithm deletes ≤ m/5 vertices (I)

Deleting a vertex of degree ≥ 5
removes at least five edges

Deletion in a 3-regular graph removes
three edges and causes at least three
more to be contracted

Deletion in an irregular graph
eliminates at least five edges

But what about 4-regular graphs?



Proof that algorithm deletes ≤ m/5 vertices (II)

When we delete a vertex from a 4-regular graph, only four edges
are deleted and there are no immediate edge contractions

but. . .

If the remaining graph is 3-regular, the next step eliminates six
edges, one more than it needs

If the remaining graph is irregular, then
the last degree-four vertex to be

deleted within it eliminates at least
eight edges, three more than it needs

Every vertex deletion leads to ≥ 5 eliminated edges, QED



Better analysis of the same algorithm

Allow degree-3 and -4 vertices
to carry “debts” up to credit
limits c3 or c4

Also allow graphs that have at
least one degree-three vertex to
carry one more debt, limit τ

When an operation creates a low-degree vertex, credit its debt to
#edges eliminated, but require all debts to be cleared by a later

operation that pays for the extra edges

Use linear programming to find optimal choices for c3, c4, and τ

⇒ same algorithm deletes at most
23m

120
vertices



Ramanujan graphs

An infinite family of 3-regular graphs
with shortest cycle length Ω(log n) [Lubotzky et al. 1988]

X 2,3 from [Chiu 1992] = truncated octahedron

These turn out to be difficult to planarize (for large n)



Deleting too few vertices

In a 3-regular graph, each vertex deletion removes ≤ 3 edges

If we delete
m

6
− k vertices, cyclomatic number (extra edges

beyond a spanning tree) remains Ω(k), with no short cycles



Densification

Graphs with no short cycles can be made more dense by
contracting BFS tree to ancestors on evenly-spaced subset of levels

No short cycles ⇒ no self-loops or multiple adjacencies
⇒ cyclomatic number remains unchanged

But #vertices is much smaller (divided by level spacing)



Lower bound

Delete too few vertices ⇒ high cyclomatic # ⇒ dense contraction
⇒ has large clique minors [Thomason 2001] ⇒ nonplanar

To make a planar subgraph, we must reduce the cyclomatic

number to O(n/ log n), by deleting
m

6
− O

(
m

log n

)
vertices



Conclusions

Our upper bounds and lower bounds for induced planarization are
near each other but with different divisors (5.2174 vs 6).

Can we close this gap?
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