Planar and Quasi Planar Simultaneous Geometric Embedding

Emilio Di Giacomo¹, Walter Didimo¹, Giuseppe Liotta¹, Henk Meijer², Stephen Wismath³

¹Università degli Studi di Perugia, Italy ²University College Roosevelt, the Netherlands ³University of Lethbridge, Canada

- Let $\langle G_1 = (V, E_1), G_2 = (V, E_2) \rangle$ be a pair of planar graphs with the same vertex set.
- A simultaneous geometric embedding (SGE) of $\langle G_1, G_2 \rangle$ is a pair of drawings $\langle \Gamma_1, \Gamma_2 \rangle$ such that:
 - Γ_i is a planar straight-line drawing of G_i for i = 1, 2;
 - each vertex $v \in V$ is represented by the same point in Γ_1 and Γ_2 .

- Let $\langle G_1 = (V, E_1), G_2 = (V, E_2) \rangle$ be a pair of planar graphs with the same vertex set.
- A simultaneous geometric embedding (SGE) of $\langle G_1, G_2 \rangle$ is a pair of drawings $\langle \Gamma_1, \Gamma_2 \rangle$ such that:
 - Γ_i is a planar straight-line drawing of G_i for i = 1, 2;
 - each vertex $v \in V$ is represented by the same point in Γ_1 and Γ_2 .

- Let $\langle G_1 = (V, E_1), G_2 = (V, E_2) \rangle$ be a pair of planar graphs with the same vertex set.
- A simultaneous geometric embedding (SGE) of $\langle G_1, G_2 \rangle$ is a pair of drawings $\langle \Gamma_1, \Gamma_2 \rangle$ such that:
 - Γ_i is a planar straight-line drawing of G_i for i = 1, 2;
 - each vertex $v \in V$ is represented by the same point in Γ_1 and Γ_2 .

4

- Let $\langle G_1 = (V, E_1), G_2 = (V, E_2) \rangle$ be a pair of planar graphs with the same vertex set.
- A simultaneous geometric embedding (SGE) of $\langle G_1, G_2 \rangle$ is a pair of drawings $\langle \Gamma_1, \Gamma_2 \rangle$ such that:
 - Γ_i is a planar straight-line drawing of G_i for i = 1, 2;
 - each vertex $v \in V$ is represented by the same point in Γ_1 and Γ_2 .

- Let $\langle G_1 = (V, E_1), G_2 = (V, E_2) \rangle$ be a pair of planar graphs with the same vertex set.
- A simultaneous geometric embedding (SGE) of $\langle G_1, G_2 \rangle$ is a pair of drawings $\langle \Gamma_1, \Gamma_2 \rangle$ such that:
 - Γ_i is a planar straight-line drawing of G_i for i = 1, 2;
 - each vertex $v \in V$ is represented by the same point in Γ_1 and Γ_2 .

SGE: Some results

G_1	G_2		
Path	Path	 Image: A start of the start of	Braß et al., 2007
Caterpillar	Caterpillar	 Image: A second s	Braß et al., 2007
Cycle	Cycle	 Image: A start of the start of	Braß et al., 2007
Tree	Matching	 Image: A set of the set of the	Cabello et al., 2011
Outerpath	Matching	 Image: A second s	Cabello et al., 2011
Planar	Planar	×	Braß et al., 2007
Outerplanar	Outerplanar	×	Braß et al., 2007
Tree	Tree	×	Geyer et al., 2009
Planar	Path	×	Braß et al., 2007
Planar	Matching	×	Cabello et al., 2011
Tree	Path	×	Angelini et al., 2012

An example to start

 G_2 : radius-2 star

There *exists* a *y*-leveling such that for *any x*-leveling the resulting drawing is *planar*

 G_2 : radius-2 star

For any y-leveling there exists an x-leveling such that the resulting drawing is planar

There *Exists* a *y*-leveling such that for *Any x*-leveling the resulting drawing is *Planar*

 G_2 : radius-2 star

For any y-leveling there exists an x-leveling such that the resulting drawing is planar

 G_2 : radius-2 star

For any y-leveling there exists an x-leveling such that the resulting drawing is planar

 G_2 : radius-2 star

For Any y-leveling there Exists an x-leveling such that the resulting drawing is Planar

AEP graphs: who are they?

 Fowler and Kobourov studied the graphs that can be simultaneously geometrically embedded with a path using the previous technique

Fowler, Kobourov GD 2007

- They call these graphs ULP (*Unlabeled Level Planar*) graph; they coincide with AEP graphs
- Fowler and Kobourov show that ULP=AEP graphs are the union of the following classes:
 - radius-2 stars
 - extended degree-3 spider
 - generalized caterpillars
- As a consequence, they obtain the following results:
 - G_1 : path, G_2 : radius-2 star \Rightarrow SGE
 - G_1 : path, G_2 : ext. deg.-3 spider \Rightarrow SGE
 - G_1 : path, G_2 : gen. caterpillar \Rightarrow SGE

Our results (1/2)

- We show that G_1 : EAP, G_2 : AEP \Rightarrow SGE
- $\bullet~$ We show that EAP $\subset~$ AEP
- We characterize EAP graphs
 - they coincide with a family that we call *fat caterpillars*
 - as a consequence we obtain the following results about SGE
 - * G_1 : fat caterpillar, G_2 : radius-2 star \Rightarrow SGE
 - * G_1 : fat caterpillar, G_2 : ext. deg.-3 spider \Rightarrow SGE
 - * G_1 : fat caterpillar, G_2 : gen. caterpillar \Rightarrow SGE
- We show that
 - G_1 : fat caterpillar and G_2 : tree of depth $\leq 2 \Rightarrow$ SGE
 - this extends a result by Angelini et al.
 Angelini, Geyer, Kaufmann, Neuwirth JGAA 2012

Our results (2/2)

- We extends our study "beyond planarity":
 - we define *simultaneous geometric quasi-planar embedding* (SGQPE)
 - We introduce AEQP graphs and EAQP graphs
- We prove that G_1 : **EAQP**, G_2 : **AEQP** \Rightarrow SGQPE
- $\bullet~$ We show that EAP $\subset~$ AEP $\subset~$ EAQP $\subset~$ AEQP
- We show that all *trees* are AEQP but not all of them are EAQP
- We show that *maximal outerpillar* are EAQP
 - as a consequence we have that G_1 : tree and G_2 : maximal outerpillar \Rightarrow SGQPE G_1 : tree and G_2 : path/cycle \Rightarrow SGQPE

Characterization of EAP graphs

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Let \mathcal{Y} be a given y-leveling We must find an x-leveling that is OK with \mathcal{Y}

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Let \mathcal{Y} be a given y-leveling We must find an x-leveling that is OK with \mathcal{Y} Let's rotate the plane

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Let \mathcal{Y} be a given y-leveling We must find an x-leveling that is OK with \mathcal{Y} Let's rotate the plane \mathcal{Y} is now an x-leveling

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Let \mathcal{Y} be a given y-leveling We must find an x-leveling that is OK with \mathcal{Y} Let's rotate the plane \mathcal{Y} is now an x-leveling Since G is EAP, it has a y-leveling that is OK with any x-leveling

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Let \mathcal{Y} be a given y-leveling We must find an x-leveling that is OK with \mathcal{Y} Let's rotate the plane \mathcal{Y} is now an x-leveling Since G is EAP, it has a y-leveling that is OK with any x-leveling

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Let \mathcal{Y} be a given y-leveling We must find an x-leveling that is OK with \mathcal{Y} Let's rotate the plane \mathcal{Y} is now an x-leveling Since G is EAP, it has a y-leveling that is OK with any x-leveling

Lemma 1 Let $G \in EAP$. Then $G \in AEP$.

Let \mathcal{Y} be a given y-leveling We must find an *x*-leveling that is OK with \mathcal{Y} Let's rotate the plane \mathcal{Y} is now an x-leveling Since G is EAP, it has a y-leveling that is OK with any x-leveling Let's rotate back

AEP graphs

Extended degree-3 spiders

Radius-2 stars Generalized caterpillars

- The *independent horizontal stabbing number* of a s.l. drawing Γ (denoted as ihs(Γ)) is the maximum number of independent edges of Γ intersected by a horizontal line
- The *independent horizontal stabbing number* of a graph *G* (denoted as ihs(*G*)) is the minimum independent horizontal stabbing number over all straight-line drawings of *G*

Lemma 2 A graph G is an EAP graph if and only if ihs(G) = 1.

 (\Rightarrow) G: EAP graph (path) $v_1 v_2 v_3 v_4 v_5 v_6 v_7$

 v_1

Lemma 2 A graph G is an EAP graph if and only if ihs(G) = 1.

 (\Leftarrow)

Lemma 2 A graph G is an EAP graph if and only if ihs(G) = 1.

(⇐)

 (\Leftarrow)

Lemma 2 A graph G is an EAP graph if and only if ihs(G) = 1.

 (\Leftarrow)

Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized caterpillar, then ihs(G) > 1.

Lemma 4 Let G be an extended degree-3 spider that is not a generalized caterpillar, then ihs(G) > 1.

Lemma 4 Let G be an extended degree-3 spider that is not a generalized caterpillar, then ihs(G) > 1.

Lemma 5 Let G be a graph that contains a cycle of length at least 4 then ihs(G) > 1.

Lemma 5 Let G be a graph that contains a cycle of length at least 4 then ihs(G) > 1.

Lemma 5 Let G be a graph that contains a cycle of length at least 4 then ihs(G) > 1.

Theorem 1 A planar graph G is an EAP graph if and only if it is a fat caterpillar.

Beyond planarity: Simultaneous Geometric Quasi Planar Embedding (SGQPE)

Simultaneous Geometric Quasi Planar Embedding

- Let $\langle G_1 = (V, E_1), G_2 = (V, E_2) \rangle$ be a pair of quasi planar graphs with the same vertex set.
- A simultaneous geometric quasi planar embedding
 (SGQPE) of (G₁, G₂) is a pair of drawings (Γ₁, Γ₂) such that:
 - Γ_i is a quasi planar straight-line drawing of G_i for i = 1, 2;
 - each vertex $v \in V$ is represented by the same point in Γ_1 and Γ_2 .

Simultaneous Geometric Quasi Planar Embedding

- Let $\langle G_1 = (V, E_1), G_2 = (V, E_2) \rangle$ be a pair of quasi planar graphs with the same vertex set.
- A simultaneous geometric quasi planar embedding
 (SGQPE) of (G₁, G₂) is a pair of drawings (Γ₁, Γ₂) such that:
 - Γ_i is a quasi planar straight-line drawing of G_i for i = 1, 2;
 - each vertex $v \in V$ is represented by the same point in Γ_1 and Γ_2 .

Recall:

- A drawing is quasi planar if it does not have three mutually crossing edges
- A graph is quasi planar if it admits a quasi planar drawing

EAQP and AEQP

EAQP graphs: There exists a y-leveling such that for any x-leveling the resulting drawing is quasi planar

AEQP graphs: For any y-leveling there exists a x-leveling such that the resulting drawing is quasi planar

Easy generalizations

Theorem 2 Let $\langle G_1, G_2 \rangle$ be a pair of graphs such that $G_1 \in AEQP$ and $G_2 \in EAQP$. Then $\langle G_1, G_2 \rangle$ admits a SGQPE.

Lemma 7 Let $G \in EAQP$. Then $G \in AEQP$.

Lemma 8 A graph G is an EAQP graph if and only if $ihs(G) \le 2$.

EAP, AEP, EAQP, AEQP: relationships Theorem 3 $EAP \subset AEP \subset EAQP \subset AEQP$

Lemma 8 All trees are AEQP graphs

Lemma 8 All trees are AEQP graphs

This can be easily derived from a paper by Didimo et al. Didimo, Kaufmann, Liotta, Okamoto, Spillner IPL 2012

Lemma 8 All trees are AEQP graphs

This can be easily derived from a paper by Didimo et al. Didimo, Kaufmann, Liotta, Okamoto, Spillner IPL 2012

They prove that for any y-leveling there exists an x-leveling such that in the resulting drawing each crossing form an angle of $\frac{\pi}{2} - \varepsilon$ (for any given $\varepsilon > 0$)

Lemma 8 All trees are AEQP graphs

This can be easily derived from a paper by Didimo et al. Didimo, Kaufmann, Liotta, Okamoto, Spillner IPL 2012

They prove that for any y-leveling there exists an x-leveling such that in the resulting drawing each crossing form an angle of $\frac{\pi}{2} - \varepsilon$ (for any given $\varepsilon > 0$)

If ε is less than $\frac{\pi}{6}$ then there cannot be three mutually crossing edges as otherwise there would be a triangle whose angle sum up to more than π

EAQP, AEQP: who are they?

Lemma 9 All maximal outerpillar are EAQP graphs

Open problems

- AEP have been characterized by Fowler and Kobourov
- EAP have been characterized in our paper

Problem 1: Characterize EAQP and AEQP graphs

• Our results imply that a tree and a path/cycle admit a SGQP embedding (while they do not admit a SGE)

Problem 2: Does every pair of trees (or planar graphs) admit a SGQPE?

Problem 3: Study simultaneous embeddability for other "beyond planarity" models