
Graph Drawing 2014

Bitonic st-orderings
of biconnected planar graphs

Martin Gronemann

Institut für Informatik
Universität zu Köln, Germany

September 24, 2014

Graph Drawing 2014

Bitonic st-orderings
of biconnected planar graphs

Martin Gronemann

Institut für Informatik
Universität zu Köln, Germany

September 24, 2014

Graph Drawing 2014

Bitonic st-orderings
of biconnected planar graphs

Martin Gronemann

Institut für Informatik
Universität zu Köln, Germany

September 24, 2014

Graph Drawing 2014

Bitonic st-orderings
of biconnected planar graphs

Martin Gronemann

Institut für Informatik
Universität zu Köln, Germany

September 24, 2014

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar

maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar

maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar

maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar

maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar

maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar

maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar
maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar
maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar
maximum degree related problems

2. Biconnected canonical & shelling ordering
not every internal node has a successor

3. SPQR-tree approach

Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar
maximum degree related problems

2. Biconnected canonical & shelling ordering
not every internal node has a successor

3. SPQR-tree approach

Biconnected planar graphs and st-orderings

What about st-orderings?

I Single source s and single sink t

I Every v ∈ V \ {s, t} has at least one predecessor and
at least one successor

I Works for (not necessarily planar) biconnected graphs

I Planar: s and t incident to the same face (here: (s, t) ∈ E)

Can we use st-orderings in the same way as canonical orderings?

Biconnected planar graphs and st-orderings

What about st-orderings?

I Single source s and single sink t

I Every v ∈ V \ {s, t} has at least one predecessor and
at least one successor

I Works for (not necessarily planar) biconnected graphs

I Planar: s and t incident to the same face (here: (s, t) ∈ E)

Can we use st-orderings in the same way as canonical orderings?

Biconnected planar graphs and st-orderings

What about st-orderings?

I Single source s and single sink t

I Every v ∈ V \ {s, t} has at least one predecessor and
at least one successor

I Works for (not necessarily planar) biconnected graphs

I Planar: s and t incident to the same face (here: (s, t) ∈ E)

Can we use st-orderings in the same way as canonical orderings?

Biconnected planar graphs and st-orderings

What about st-orderings?

I Single source s and single sink t

I Every v ∈ V \ {s, t} has at least one predecessor and
at least one successor

I Works for (not necessarily planar) biconnected graphs

I Planar: s and t incident to the same face (here: (s, t) ∈ E)

Can we use st-orderings in the same way as canonical orderings?

Biconnected planar graphs and st-orderings

What about st-orderings?

I Single source s and single sink t

I Every v ∈ V \ {s, t} has at least one predecessor and
at least one successor

I Works for (not necessarily planar) biconnected graphs

I Planar: s and t incident to the same face (here: (s, t) ∈ E)

Can we use st-orderings in the same way as canonical orderings?

Biconnected planar graphs and st-orderings

What about st-orderings?

I Single source s and single sink t

I Every v ∈ V \ {s, t} has at least one predecessor and
at least one successor

I Works for (not necessarily planar) biconnected graphs

I Planar: s and t incident to the same face (here: (s, t) ∈ E)

Can we use st-orderings in the same way as canonical orderings?

Biconnected planar graphs and st-orderings

What about st-orderings?

I Single source s and single sink t

I Every v ∈ V \ {s, t} has at least one predecessor and
at least one successor

I Works for (not necessarily planar) biconnected graphs

I Planar: s and t incident to the same face (here: (s, t) ∈ E)

Can we use st-orderings in the same way as canonical orderings?

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

Multiple predecessors ⇒ works!
Sin-

gle predecessor

(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

Multiple predecessors ⇒ works!

Single predecessor
(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

Single predecessor
(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

Single predecessor
(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

Single predecessor
(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

Single predecessor
(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

Single predecessor
(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

Single predecessor
(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

Single predecessor
(Harel & Sardas)

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor

(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor

(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works! Single predecessor

(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works! Single predecessor

(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works! Single predecessor

(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works! Single predecessor

(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works! Single predecessor

(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works! Single predecessor

(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Experiment

“Let’s use an st-ordering for the FPP-algorithm”

v

Multiple predecessors ⇒ works!

v

Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor
property.

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

consecutive

Question
Is there an st-ordering with this property?

→ bitonic st-ordering

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

consecutive

Question
Is there an st-ordering with this property?

→ bitonic st-ordering

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

consecutive st-ordering

Question
Is there an st-ordering with this property?

→ bitonic st-ordering

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

consecutive st-ordering

Question
Is there an st-ordering with this property?

→ bitonic st-ordering

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

consecutive st-ordering

Question
Is there an st-ordering with this property? → bitonic st-ordering

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

consecutive st-ordering

Question
Is there an st-ordering with this property? → bitonic st-ordering

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

consecutive st-ordering

Question
Is there an st-ordering with this property? → bitonic st-ordering

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

consecutive st-ordering

Question
Is there an st-ordering with this property? → bitonic st-ordering

Canonical vs. st-ordering

Intuition
At any time, all incident edges that are not yet present in the
current drawing, appear consecutively in the embedding.

Question
Is there an st-ordering with this property? → bitonic st-ordering

Canonical vs. st-ordering

Definition
Given an st-ordering π : V 7→ {1, . . . , |V |} with π(v) being the
rank of v ∈ V in the ordering.

S(u) = {v1, . . . , vm}

Successors of u ordered
as in the embedding

∀u ∈ V :

S(u) is bitonic with respect to π

⇒ π is a bitonic st-order

Canonical vs. st-ordering

Definition
Given an st-ordering π : V 7→ {1, . . . , |V |} with π(v) being the
rank of v ∈ V in the ordering.

v1
vm

vh

u

S(u) = {v1, . . . , vm}

Successors of u ordered
as in the embedding

∀u ∈ V :

S(u) is bitonic with respect to π

⇒ π is a bitonic st-order

Canonical vs. st-ordering

Definition
Given an st-ordering π : V 7→ {1, . . . , |V |} with π(v) being the
rank of v ∈ V in the ordering.

v1
vm

vh

u

S(u) = {v1, . . . , vm}

Successors of u ordered
as in the embedding

∀u ∈ V :

S(u) is bitonic with respect to π

⇒ π is a bitonic st-order

Canonical vs. st-ordering

Definition
Given an st-ordering π : V 7→ {1, . . . , |V |} with π(v) being the
rank of v ∈ V in the ordering.

v1
vm

vh

u

S(u) = {v1, . . . , vm}

Successors of u ordered
as in the embedding

v1 vh vm

π

π(v1) < · · · < π(vh) > · · · > π(vm)

∀u ∈ V :

S(u) is bitonic with respect to π

⇒ π is a bitonic st-order

Canonical vs. st-ordering

Definition
Given an st-ordering π : V 7→ {1, . . . , |V |} with π(v) being the
rank of v ∈ V in the ordering.

v1
vm

vh

u

S(u) = {v1, . . . , vm}

Successors of u ordered
as in the embedding

v1 vh vm

π

π(v1) < · · · < π(vh) > · · · > π(vm)

An increasing and then
decreasing sequence ⇒ bitonic

∀u ∈ V :

S(u) is bitonic with respect to π

⇒ π is a bitonic st-order

Canonical vs. st-ordering

Definition
Given an st-ordering π : V 7→ {1, . . . , |V |} with π(v) being the
rank of v ∈ V in the ordering.

v1
vm

vh

u

S(u) = {v1, . . . , vm}

Successors of u ordered
as in the embedding

v1 vh vm

π

π(v1) < · · · < π(vh) > · · · > π(vm)

An increasing and then
decreasing sequence ⇒ bitonic

∀u ∈ V :

S(u) is bitonic with respect to π

⇒ π is a bitonic st-order

Canonical vs. st-ordering

Definition
Given an st-ordering π : V 7→ {1, . . . , |V |} with π(v) being the
rank of v ∈ V in the ordering.

v1
vm

vh

u

S(u) = {v1, . . . , vm}

Successors of u ordered
as in the embedding

v1 vh vm

π

π(v1) < · · · < π(vh) > · · · > π(vm)

An increasing and then
decreasing sequence ⇒ bitonic

∀u ∈ V : S(u) is bitonic with respect to π

⇒ π is a bitonic st-order

Canonical vs. st-ordering

Definition
Given an st-ordering π : V 7→ {1, . . . , |V |} with π(v) being the
rank of v ∈ V in the ordering.

v1
vm

vh

u

S(u) = {v1, . . . , vm}

Successors of u ordered
as in the embedding

v1 vh vm

π

π(v1) < · · · < π(vh) > · · · > π(vm)

An increasing and then
decreasing sequence ⇒ bitonic

∀u ∈ V : S(u) is bitonic with respect to π ⇒ π is a bitonic st-order

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E
+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

linear-time algorithm

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

linear-time algorithm

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

linear-time algorithm

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

bitonic st-ordering π

fixed embedding

+

+

?

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

bitonic st-ordering π

fixed embedding

+

+

counterexample

Corollary

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

linear-time algorithm

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

linear-time algorithm

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

linear-time algorithm

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

linear-time algorithm

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Biconnected planar graph G = (V ,E)

st-edge (s, t) ∈ E

linear-time algorithm

bitonic st-ordering π

corresponding embedding

+

+

Theorem

Sketch of the algorithm

I SPQR-tree approach
to derive π

I Canonical ordering for
the R-nodes

I P-nodes may require
a change in the
embedding

Bitonic st-ordering

Experiment (revisited)

“Let’s use a bitonic st-ordering for the FPP-algorithm”

2020

1212

77

1515

1313

1111

1010

1818

99

44

22

55

1414

1919

33

88

11

1717

66

1616

Bitonic st-ordering

Experiment (revisited)

“Let’s use a bitonic st-ordering for the FPP-algorithm”

2020

1212

77

1515

1313

1111

1010

1818

99

44

22

55

1414

1919

33

88

11

1717

66

1616

Rectilinear T-shaped contact representation

Task

I Given a (biconnected) planar graph

I Vertices drawn as rectilinear
T-shaped polygons

I Here: upside down T’s

I Adjacency expressed by touching
sides of two polygons

b

c

d

a

a

Rectilinear T-shaped contact representation

Task

I Given a (biconnected) planar graph

I Vertices drawn as rectilinear
T-shaped polygons

I Here: upside down T’s

I Adjacency expressed by touching
sides of two polygons

b

c

d

a

a

Rectilinear T-shaped contact representation

Task

I Given a (biconnected) planar graph

I Vertices drawn as rectilinear
T-shaped polygons

I Here: upside down T’s

I Adjacency expressed by touching
sides of two polygons

b

c

d

a

a

Rectilinear T-shaped contact representation

Task

I Given a (biconnected) planar graph

I Vertices drawn as rectilinear
T-shaped polygons

I Here: upside down T’s

I Adjacency expressed by touching
sides of two polygons

b

c

d

a

a

Rectilinear T-shaped contact representation

Task

I Given a (biconnected) planar graph

I Vertices drawn as rectilinear
T-shaped polygons

I Here: upside down T’s

I Adjacency expressed by touching
sides of two polygons

b

c

d

a

a

b

cd

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

Idea

I Create a visibility representation,
but with y(v) = π(v)

I Successors in an increasing and
decreasing staircase pattern

Simple trick

1. Grow a pole touching the highest
successor from below

2. Pull the remaining ones towards it

u

v1

vh

vm

Rectilinear T-shaped contact representation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Rectilinear T-shaped contact representation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Conclusion

Bitonic st-ordering

I Special st-ordering obtainable in linear time

I Can be used similar to canonical orderings

I Requires a variable embedding setting

I Implementation in OGDF

Ongoing and future work

I Directed graphs, esp. planar st-graphs

I Relation to upward straight-line drawings

I More applications, undirected and directed

Thank you for your attention!

Conclusion

Bitonic st-ordering

I Special st-ordering obtainable in linear time

I Can be used similar to canonical orderings

I Requires a variable embedding setting

I Implementation in OGDF

Ongoing and future work

I Directed graphs, esp. planar st-graphs

I Relation to upward straight-line drawings

I More applications, undirected and directed

Thank you for your attention!

Conclusion

Bitonic st-ordering

I Special st-ordering obtainable in linear time

I Can be used similar to canonical orderings

I Requires a variable embedding setting

I Implementation in OGDF

Ongoing and future work

I Directed graphs, esp. planar st-graphs

I Relation to upward straight-line drawings

I More applications, undirected and directed

Thank you for your attention!

