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Canonical ordering for incremental drawing algorithms
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Limited to triconnected (Kant) or maximal planar (FPP)
What about biconnected?

v

Solutions for triconnected = biconnected
1. Augmentation to triconnected or maximal planar
4 maximum degree related problems 4

2. Biconnected canonical & shelling ordering
4 not every internal node has a successor 4

3. SPQR-tree approach
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What about st-orderings?

v

Single source s and single sink t

v

Every v € V' \ {s, t} has at least one predecessor and
at least one successor

v

Works for (not necessarily planar) biconnected graphs

v

Planar: s and t incident to the same face (here: (s,t) € E)

Can we use st-orderings in the same way as canonical orderings?
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Experiment
“Let’s use an st-ordering for the FPP-algorithm”

4

Multiple predecessors = works! Single predecessor
(Harel & Sardas)

Observation
The unattached edges are the problem, not the single predecessor

property.
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Definition
Given an st-ordering 7 : V — {1,...,|V|} with w(v) being the
rank of v € V in the ordering.

s
Vi Vh Vm
S(U)Z{VL...,Vm} 7T(V1) < - < ﬂ-(vh)> > 7T(Vm)
Successors of u ordered An increasing and then
as in the embedding decreasing sequence = bitonic

Vu € V : 5(u) is bitonic with respect to m = 7 is a bitonic st-order
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Biconnected planar graph G = (V, E)
+ Sketch of the algorithm

st-edge (s, t) € E

» SPQR-tree approach
to derive 7

linear-time algorithm . .
& » Canonical ordering for

ii the R-nodes

» P-nodes may require
bitonic st-ordering m a change in the

T _ embedding
corresponding embedding
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Implementation in OGDF

Ongoing and future work

» Directed graphs, esp. planar st-graphs
» Relation to upward straight-line drawings

» More applications, undirected and directed

Thank you for your attention!



