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Introduction

Backstory

I Drawing undirected planar graphs

I Canonical ordering for incremental drawing algorithms

I Limited to triconnected (Kant) or maximal planar (FPP)

I What about biconnected?

Solutions for triconnected ⇒ biconnected

1. Augmentation to triconnected or maximal planar

maximum degree related problems

2. Biconnected canonical & shelling ordering

not every internal node has a successor

3. SPQR-tree approach
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Biconnected planar graphs and st-orderings

What about st-orderings?

I Single source s and single sink t

I Every v ∈ V \ {s, t} has at least one predecessor and
at least one successor

I Works for (not necessarily planar) biconnected graphs

I Planar: s and t incident to the same face (here: (s, t) ∈ E )

Can we use st-orderings in the same way as canonical orderings?
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to derive π
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the R-nodes

I P-nodes may require
a change in the
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Conclusion
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I Special st-ordering obtainable in linear time

I Can be used similar to canonical orderings

I Requires a variable embedding setting

I Implementation in OGDF
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I Directed graphs, esp. planar st-graphs
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I More applications, undirected and directed
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