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On-line graph drawing deals with huge graphs which are partially unknown. At any
time, a tiny part of the graph is displayed on the screen. Examples include web graphs
and graphs of links in distributed file systems. This paper discusses issues arising in the
presentation of such graphs. The paper describes a system for dealing with web graphs
using on-line graph drawing.
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1. Introduction

AS GRAPHICS WORKSTATIONS have now become common tools for software and informa-
tion engineers, visualization of relational information has become an essential element
of current software systems. Examples include web browsers, file system visualizers,
CASE tools, database design systems, network design systems, visual programming
interfaces and reverse engineering systems. The effectiveness of visualizing relational
information is widely recognized.

Most systems use graphs to model relational structures: the entities are nodes, and
the relationships are edges (sometimes called links). For example, most CASE tools
use graphs to model the dependencies between modules in a large program. A module
is represented as a node in a graph, and the dependency of one module a on module b
is represented by an edge from a to b. These graphs are typically drawn as diagrams
with text at the nodes and line segments joining the nodes as edges. As another example,
the structure of the World Wide Web can be modeled as a Web graph : the nodes are
html documents, and a link from one document to another is represented as a directed
edge.

Relational models are useful only to the degree that the diagram effectively conveys
information. A good diagram is worth a thousand words, but a poor diagram can be
confusing and misleading. The central problem in creating good diagrams is designing
algorithms to assign a location for each node and a route for each edge; this is the
classical graph drawing problem. Since the advent of graphics workstations in the early
1980s, the graph drawing problem has been the subject of a great deal of research [1—3] .
1045-926X/98/060623#23 $30.00/0 ( 1998 Academic Press
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As the amount of information that we want to visualize becomes larger and the
relations become more complicated, classical graph drawing methods tend to be
inadequate. Even in a small modern file system (say with a 2GB drive on a PC) there are
hundreds of nodes and links. Web graphs are much larger; even a small organization
such as a University has many thousands of Web documents. When the graph represents
distributed data (such as the Web), the graph is not only huge but also it is partially
unknown, and the visualization system displays only a tiny part of a huge unexplored
graph.

Most existing information visualization systems have problems presenting very large
graphs. The most common solution is to provide a virtual (very large) page to fit the layout
of the whole graph, and then provide a small window and scroll bars to allow the user to
navigate through the visualization. Some alternative techniques have also been proposed
[4—7]. For example, fish-eye [4] views can keep a detailed picture of a part of a graph as
well as the global context of the graph. The hyperbolic browser [ 7 ] technique performs
fish-eye viewing with animated transitions to preserve the user’s mental map [8] (see
Figure 1). Three-dimensional methods, such as cone trees [5], seem to increase the density
of information on the screen.

These techniques usually build a large static visualization of the graph, and then allow
the user to navigate through the visualization. Since the amount of data that can be
effectively displayed at one time is limited, these static techniques are unable to display
the whole graph in detail at one time. To solve this problem, these techniques involve
a mechanism to change the view (dynamic viewing); this allows the user to effectively
view only at one time a small area of the whole visualization by changing the viewing
area (with the virtual page and hyperbolic tree techniques), zoomed focus point (with the
fish-eye and hyperbolic tree techniques), or viewpoint (with the 3D cone tree technique)
of the visualization.

While these techniques (static layout]dynamic viewing ) effectively deal with graphs of
moderately large size (with hundreds or thousands of nodes), they do not handle the
entire web, a huge and partially unknown graph (with millions or perhaps billions of
nodes). The major problems may be outlined as below:

z All of these static visualization techniques pre-define the layout. In most cases, the
whole huge graph is not known. The local node in a hypermedia system may know
only a small part of the whole graph (say one web site). So it may be impossible to
pre-compute the layout of the whole graph.

z Further, pre-computation of the overall geometrical structure (global context) of huge
graphs is very computationally expensive. Most graph layout algorithms have super-
linear time complexity, and in practice are too slow for interactive graphics if the
number of nodes is larger than a few hundred. It is not necessary to build a global
context, since the user always focuses on a small logical section of the graph.

z Pre-computation of the layout itself poses another problem. Since views are
extracted from a pre-defined layout, changing views is a geometrical operation and
not a logical operation. The user naturally thinks in terms of the logical relations in
the application domain (for example, hyperlinks in the hypermedia), not in terms of
the synthesized geometry of the layout; thus, logical navigation of the hyperlinks
through the entire graph by using static techniques (fixed geometrical representations)
is difficult.



Figure 1. An example of hyperbolic tree viewing with animated transitions. It uses the ‘static
layout]dynamic viewing’ technique (from Lamping et al. [ 7 ], with permission of Xerox PARC and Inxight

Software)

ON-LINE ANIMATED VISUALIZATION 625
Another way to deal with the problem of visualizing huge graphs is to cluster the
nodes. Groups of nodes that are closely related form ‘super-nodes’; the super-nodes
themselves may be clustered into another level of super-nodes. Several visualization
systems take this approach [9]. In effect, this approach gives a broad picture of the
whole system.

Our approach is different: we present a detailed picture of a small part of the huge
graph. On-line graph drawing aims to investigate the visualization of huge graphs which
are partially unknown. At any time, a tiny but nonempty subgraph called the ‘logical
frame’ is known. A picture of the logical frame is displayed on the screen. Exploration of
the huge graph proceeds by changing the logical frame.

On-line graph drawing provides a major departure from traditional graph drawing
methods. It does not pre-define the geometry of the whole graph at once; instead it
incrementally calculates and maintains a small local visualization on-line, corresponding
to the change of the user’s focus. This feature enables the user to logically explore the
huge graph without requiring the whole graph to be known.

We allow the user to change focus nodes by selecting another node of the logical
frame, but we do not anticipate the user’s selection. However, we do assume that we
always can discover the neighborhood of the focus node. This is analogous to following
hypertext links from the web page represented by the focus node of the current view.

The layout of the logical frame must satisfy the usual readability criteria for drawings
of graphs (see Lin and Eades [10]); for example, edge crossings should be avoided, the
nodes should be spread evenly over the page, and a variety of application dependent
geometric constraints should be satisfied. In addition, the transition from the picture of
one logical frame to the next should preserve the mental map [8], that is, the difference
between successive drawings should be small enough that the user perceives the
transition to be smooth.

This paper describes a model for on-line graph drawing, and describes an instanti-
ation of that model in a system On-line force-directed animated visualization (OFDAV)
for assisting web navigation. An interesting part of the system is a new force-directed
graph drawing algorithm. This new algorithm can be used to produce a continuous
sequence of layouts that address the above drawing criteria and preserve the mental
map.
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The next section describes the on-line graph model; in particular, we describe the
transitions between logical frames. Section 3 describes our model for drawings of the
logical frames, and the animated transitions between the drawings. The algorithms used
to create the drawings and the animations are described in Section 4. The final section
presents some sample screenshots which display the results of our algorithms.

2. The On-line Graph Model

In this section we describe the on-line graph model and the transitions between logical
frames. Figure 2 shows a single frame Fi collected from OFDAV.

We now describe these concepts in a greater level of formality.
Our aim is to provide tools for exploring a huge graph G\(V, E ) . The exploration

of the graph G uses a sequence of logical frames (see Figure 3):

F1\(G1, Q1)

F2\(G2, Q2)

F3\(G3, Q3)

F

Each logical frame Fi\(Gi, Qi) consists of a connected subgraph Gi\(Vi , Ei ) of G and
a quene Qi of ‘focus’ nodes. For example, in Figure 2, we have Qi\Mq1, q2N,
Vi\Mq1, q2, a, b, c, d, e, f, g, h, iN and Ei\M(q1, q2), (q1, a), (q1, b), (q1, c), (q1, d ), (q1, e),
(q2, f ), (q2, g ), (q2, h), (q2, i )N.

Successive logical frames differ only by a few nodes. The sequence of logical frames is
the sequence of subgraphs of G viewed by the user; a user interaction changes from one
logical frame to the next.

To define the ‘logical frame’ notion more precisely, we need some terminology.
Graph-theoretic terminology is from Bondy and Murty [11].

Suppose that G\(V, E) is a graph, v3V, and d is a nonnegative integer. The
distance-d neighborhood Nd(v) of v is the subgraph of G induced by the set of nodes
Figure 2. A single frame Fi



Figure 3. The exploration of the huge, partially unknown graph G uses a sequence of logical frames
F1\(G1, Q1), F2\(G2, Q2) ,2

Figure 4. The logical frame, that is, the subgraph which is currently being viewed, is induced by a sequence
N(vi ), N(vi]1), N(vi]2), N(vi]3) of neighborhoods: (a) There are four distance-1 neighborhoods in this logical

frame Fi . (b) There are three local parts of distance-1 neighborhood in this Fi
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whose graph-theoretic distance from v is at most d. In our implementation we have
chosen d\1, and we write N1(v) as N(v) and call it the neighborhood of v. Note that
v3N(v).

Given a queue Q\(v1, v2 ,2, vs) of nodes, the subgraph of G induced by the union of
N(v1), N(v2),2, N(vs) is called a logical frame [see Figure 4(a)]. The nodes v1, v2,2, vs are
the focus nodes of the logical frame.
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Suppose that Q\(v1, v2,2, vs) is the queue of focus nodes in G. We divide each
neighborhood N(v) into two parts, the common part C(v), and the local part P(v), defined as
follows:

z C(v) is the graph induced by the nodes of N(v) which also occur in a neighborhood
N(v @) for some focus node v@Ov ; i.e.

C(vj)\
s

+
i\1, iOj

N(vj )WN(vi)

z P(v) is the graph induced by those nodes of N(v) which do not occur in a neighbor-
hood N(v @ ) for any focus node v@Ov [see Figure 4(b)], i.e.

P(vj)\N(vj)[
s

+
i\1, iOj

N(vi )

The exploration of the G proceeds by visualizing a sequence F1\(G1, Q1),
F2\(G2, Q2),2, of logical frames. As mentioned above, each logical frame Fi consists
of a subgraph Gi of G and a queue Qi of nodes of Gi .

In practice, only a small number of nodes can be on the screen at a time. We assume
a global constant B which is an upper bound on the queue size. We have found that for
web graphs, values of B between 7 and 10 ensure that 20—100 nodes are on the screen at
a time.

A logical frame Fi]1 is obtained from Fi by the addition of a focus node u and its
neighborhood, and the deletion of at most one focus node u and its neighborhood, i.e.

Qi]1\( QiXMuN)[MvN

In most cases, the initial logical viewing frame F1 consists of the subgraph induced by
one focus node and its neighborhood; in some cases, there may be up to B focus nodes
with their neighborhoods.

To change from one logical frame Fi to the next Fi]1, the user selects a nonfocus
node u3Fi (with a mouse click); if P(u)O0, then the node u becomes a focus node and
is added to the queue Q. Note that the addition of u implies that the nodes in P(u) will be
added to Fi]1.

Whenever a new focus node u is to be added to the end of the queue while the queue
is already full (the length is already B ), then an old node v must be deleted from the
queue. Note that the nodes in P(v) will be deleted from Fi . This operation requires
a deletion policy ; two such policies are:

z FIFO : delete the node at the head of the Q ; this is the ‘least recently used’ focus node.
z Largest K-distance rule: delete the node in Q whose graph-theoretical distance from the

new focus node is the largest. If there is more than one such node, then we may use
a FIFO rule to choose one of them. This rule guarantees the connectivity of Fi]1 as
long as Fi is connected.

The system OFDAV described in Section 5 uses the FIFO policy.
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3. The Graph Drawing and Animation Models

A drawing D of a graph G\(V, E ) consists of a location for each node v3V and a route
for each edge e3E.

A visualization of the sequence F1\(G1, Q1), F2\(G2, Q2 ) ,2 of logical frames
consists of a drawing Di of each graph Gi ; each drawing Di is a key frame of the
visualization.

Key frame sequences occur in many interactive systems which handle relational
information. Most such systems suffer from the ‘mental map’ problem: a small logical
change in the graph results in a large change in relative positions of nodes in the
drawing. The mental map problem has been addressed in several ways [8]; here we use
animation or ‘in betweening’ along with a force-directed layout algorithm to preserve the
mental map between key frames.

The layout of the key frame must satisfy the usual readability requirements of graph
drawing [ 2 ]. Experience has shown that traditional force-directed algorithms are
moderately successful in achieving these readability requirements. For on-line graph
drawing, we have some further requirements. We say that the convex hull of the images
of the focus node and its local part is the local region of the focus node. For on-line graph
drawing, to help the user follow the addition and deletion of nodes, the local regions of
a key frame should not overlap. In Section 4 we describe a ‘modified spring algorithm’
which achieves this extra requirement (see Figures 10 and 11). On-line graph drawing
also requires a smooth transition between key frames. This is achieved by animating the
force-directed algorithm described in Section 4.

We now describe the animation method.
Each drawing Di is a ‘spring drawing’, that is, it is calculated using a force-directed

algorithm. This algorithm places nodes so that a global energy function is locally
minimized. One can view the algorithm as follows. Each node is replaced by a steel ring,
and edges are replaced by steel springs. The rings have a gravitational repulsion acting
between them. This is illustrated in Figure 5. It is simple to compute the energy of
a specific layout of such a linked structure. The algorithm computes a layout with
Figure 5. In the spring model, each node is replaced by a steel ring, and edges are replaced by steel springs



Figure 6. For each transformation from Fi[1 to Fi , there is a sequence D0(Fi), D1 (Fi),2 of drawings
called the screens of Fi . Two transformations, from Fi[2 to Fi[1 and from Fi[1 to Fi consist of two

sequences of animated drawings
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a locally minimal energy. Spring drawings have been used in a variety of classical graph
drawings systems [12—18].

Our ‘in-betweening’ technique (see Figure 6) is described next. It aims to achieve the
twin goals of good layout and the preservation of the mental map.

The in-betweening consists of a sequence D0
i]1 , D 1

i]1, D2
i]1,2, Dk

i]1\Di]1 of
drawings of Gi]1 called screens. They are computed by a modified spring algorithm,
described in the next section. The locations of the nodes in D j

i]1 differ only slightly
from the locations of the nodes in D j]1

i]1 ; the appearance is that of all the nodes moving
slowly. The new focus node moves linearly toward the center of the page. The other
nodes move relative to the position of the focus node according to the spring and
gravitational forces; each D j

i]1 has energy a little lower than that of D j[1
i]1 .

We use this slightly unusual in-betweening method because it gives the user good
feedback for the force system: the user can ‘see’ the forces in operation. This makes it
easier for the user to predict and plan the layout. A simple linear interpolation between
D j[1

i]1 and D j
i]1 would not provide such feedback.

The nodes of the first screen D0
1 of the first logical frame are initially placed at random

locations.
The change in logical frames from Fi to Fi]1 is triggered by a mouse click on the new

focus node. This click has the graphical effect of graphically deleting node images of
nodes in Fi!Fi]1 and adding the nodes in Fi]1!F̂i . (In our implementation, the nodes
of Fi]1!Fi appear on mouse-down and the nodes of Fi!Fi]1 fade after mouse-up.)
The nodes common to Fi]1 and Fi stay in the same locations on the screen as they were
in the final screen of Fi[1 . In Figure 6, the nodes a, b and d are common to Fi]1 and Fi .
Note that the locations of a, b and d in the final screen of Fi[1 and the first screen of
Fi are the same. The new nodes (of Fi!Fi[1) appear radially around and very close to
their neighbors in Fi[1. The old nodes (of Fi[1!Fi) fade and disappear smoothly.

4. The Modified Spring Algorithm

This force-directed animation algorithm is based on Eades [13] which is the combina-
tion of Hooke’s law springs and Newtonian gravitational forces. In order to address the
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specific criteria of on-line drawing, we add extra forces among the neighborhoods,
N(vi), N(vi]1) ,2, N(vi]B[1) of the focus nodes. These extra forces are used to separate
the neighborhoods so that the user can visually identify the changes. This extra force is
also a Newtonian gravitational force.

We also treat these graphs as a set of rooted trees because many of the graphs that we
deal with are trees, or tree-like structures.

4.1. The Force Model

Suppose that Fi\(Gi , Qi) is the logical frame which is currently being viewed on the
screen, and Gi\(Vi , Ei).

The total force applied on node v is

f (v)\ +
u3N (v)

fuv] +
u3V

i

guv] +
u3Q

i

huv (1)

where fuv is the force exerted on v by the spring between u and v, and guv and huv are the
gravitational repulsions exerted on v by one of the other node u in Fi .

The force fuv follows Hooke’s law, that is, fuv is proportional to the difference
between the distance between u and v and the zero energy length of the spring. The
Newtonian gravitational forces guv and huv follow an inverse square law. Let us denote the
Euclidean distance between points p and q by d( p, q), and suppose that the position of
node v is denoted by pv\(xv , yv). Thus from Eq. (1), the x component fx(v) of the force
f (v) on v is

fx(v)\ +
u3N (v )

k(1)
uv

(d( pu , pv )[luv)(xv[xu)
d( pu , pv)

] +
u3V

i

k (2)
uv

(xv[xu )
(d( pu , pv))3

] +
u3Q

i

k (3)
uv

(xv[xu )
(d( pu , pv))3

(2)

The y component fy(v) of f(v) has a similar expression. The parameters luv , k (1)
uv , k (2)

uv ,
and k (3)

uv are independent of the positions of the nodes, and may be interpreted as
follows.

z The zero energy length of the spring between u and v is luv . If the spring has length
luv (that is, d( pu , pv)\luv), then no force is exerted by (u, v). In our experiment, we
normally set luv\70. (The total size of the display applet in OFDAV is 1000 units
wide and 700 units high.)

z The ‘stiffness’ of the spring between u and v is expressed with k (1)
uv : the larger the value

of k (1)
uv , the more the tendency for the distance between u and v to be close to luv . In

our system OFDAV, we set

k (1)
uv\G

1
3 if u and v3Q
1
30 otherwise

z The strength of the gravitational repulsion between any u and v depends on k (2)
uv . In

OFDAV, we set k (2)
uv\3.
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z The strength of the extra gravitational repulsion between u3Q and v depends on k (3)
uv .

In OFDAV, we set k (3)
uv\6.

This modified spring model aims to satisfy four important aesthetics:

1. The spring force between adjacent nodes aims to ensure that the distance between
adjacent nodes u and v is approximately equal to luv .

2. The gravitational force aims to ensure that nodes are not too close together.
3. The extra gravitational force aims to minimize the overlaps among the neighbor-

hoods, N(vi), N(vi]1) ,2, N(vi]B[1), within the logical frame. The aim is to
ensure that the next nodes to disappear are placed close together and to separate
them from the rest of the logical frame; we have found that this makes it easier to
identify the deleting objects.

4. This extra gravitational force also aims to keep the layout of the queue of focus
nodes close to a straight line. This helps to give the direction of the exploration of
the huge graph G, and helps the user to gain an understanding of where they are
going and where they came from: new nodes appear in one end of the line and
nodes disappear at the other end.

To explain this extra gravitational force, we give a simple example. The logical frame
shown in Figure 7 consists of four focus nodes V1, V2 , V3 and V4 , and the corresponding
Figure 7. An example of applying Modified Spring Algorithm
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neighborhoods of these focus nodes. Now, consider the total force on node v. In the
traditional spring algorithm we have

fv\fV3 , v] +
u3Ma ,2, g ,V1,2,V4N

g uv (3)

In the modified spring algorithm with extra gravitational forces we have

fv\fV3, v] +
u3Ma ,2, g ,V1,2,V4N

g uv] +
u3MV1,2,V4N

huv (4)

Here the extra gravitational forces are hV1,v , hV2,v , hV3,v and hV4,v .

4.2. Finding an Equilibrium Configuration of the Forces

An equilibrium drawing of the logical frame Fi is a drawing in which the total force f (v) on
each node v is zero. Equivalently, the model seeks to find a drawing in which the
potential energy is locally minimal with respect to the node positions. The key frame
Di is at equilibrium, and the graph Gi]1 differs from Gi by just a few nodes.

Consider the in-betweening sequence D0
i]1, D 1

i]1, D2
i]1,2, Dk

i]1\Di]1 of screens
leading from the key frame Di to the key frame Di]1. This begins with a drawing
Gi]1 that is not at equilibrium, but as it differs very little from Di , it is close to
equilibrium. Each D j

i]1 is a little closer to equilibrium; i.e. the animation is driven by the
forces moving the nodes toward equilibrium positions. This is accomplished by moving
each node v a small amount proportional to the magnitude of f (v) in the direction of
f (v) at each step. Next we consider the details of this motion.

We use a very simple numerical technique to minimize energy. The technique has two
aims. The first is to find an equilibrium layout as per (1) and (2). The second is to
produce a smooth motion on the screen, that is, to give a visual effect of continuous
movement. The second aim implies that we do not use a complex (and perhaps faster)
numerical technique because it would produce a jerky motion.

The force f (v) has two components, fx(v) and fy(v) ; we show how to compute the
movement Dx(v) in the x direction of a single animation step; the y movement Dy(v) is
similar.

From Newton’s second law of motion, fx(v)\m(v)ax (v). Here, m(v) is the mass of the
node v, and ax(v) is the acceleration of the motion. For simplicity, we assume that the
mass of every node is one; hence ax(v)\fx (v).

The initial speed of node v on the first screen D0
i]1 is zero, that is, Vx(0)\0. Thus, we

have the speed of motion of node v at time t in the x direction as

Vx(t )\P
t

0
ax (t ) dt (5)

and the position of v at time t in the x direction as

x (t )\x(0)]P
t

0 P
t

0
ax(t ) dt dt (6)

Let t0\0, t1\t0]Dt ,2, t j]1]Dt ,2. When Dt is very small, we can regard the
acceleration of v in the time interval [tj[1, t j ] as a constant\ax(tj[1). Thus, we have the
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following approximation:

V(t j)\V(t j[1)]ax(t j[1)Dt ( 7 )
and

x(t j )\x(t j[1)]Vx (t j[1)Dt]
ax(t j[1)

2
D2

t (8)

Let

Dx(v)\x(t j)[x(t j]1)\Vx(t j[1)Dt]
ax (t j[1)

2
D2

t (9)

Here Dt is the time period of a single animation loop (normally called the perceptual
processing time constant ); we set Dt\0.1 s. We can also safely ignore the term Vx (t j[1)Dt .

Now, we have

Dx(v)\
ax (t j[1)

2
D2

t (10)

Substituting (10) into Newton’s second law of motion, we have

Dx (v)\
fx (v)
2

D2
t\C * fx (v) (11)

where C\D2
t/2. Note that if Dt\0)1 s, then C\1/200.

Now, we can rewrite the force model shown in (1) and (2) to an animated motion
model

Dx(v)\ +
u3N (v)

k (1)
uv

(d( pu , pv)[luv) (xv[xu)
d( pu , pv)

] +
u3V

i

k (2)
uv

(xv[xu)
(d( pu , pv))3

] +
u3Q

i

k (3)
uv

(xv[xu )
(d( pu , pv))3

(12)

Once the actual value Dx(v) of the distance increment for the next motion in the
(i]1)th animation loop has been generated, we have to restrict the distance of the
motion in the next animation loop to achieve the goal of producing smoothly inter-
polated curves and avoid ‘jumps’ of the objects on the screen. So that the final value
assigned to Dx(v) is

Dx(v)\G
[5 if Dx(v)4[5

Dx (v) if [5(Dx (v)(5

5 if 54Dx (v)

(13)

In our implementation of this model, we further simplify the animation to reduce the
computation time: we ignore the gravitational force guv between nodes u and v if the
distance d( pu, pv ) is greater than 100 units, and we ignore the extra gravitational force
huv between nodes u and v if the distance d( pu , pv) is greater than 400 units.

4.3 The Complete Layout Algorithm

The following pseudo-code is used to calculate the distance increment value D for every
node in a single animation loop. This process is repeated in every time period Dt . We
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assume that:

z Nnode is an integer pointer that points to the last node element in array nodes[12n ].
The current logical frame has a set of nodes, nodes[1], nodes[2],2nodes[Nnode].

z Nedge is an integer pointer that points to the last edge element in array edges [12n]. The
current logical frame has a set of edges, edges[1], edges[2],2edges[Nedge].

z edges[i ] .startpoint is an integer pointer that points to a node element in nodes[12n]
from which the edge starts.

z edges[i ] .endpoint is an integer pointer that points to a node element in nodes[12n] to
which the edge ends.

z edges[i ] . linitial is the zero energy length of this edge.
z nodes[i ] .x and nodes[i ] . y represent the position of a node in graph image. This node is

stored in the ith element of the array nodes[12n].

Modified Spring Algorithm

for i\1 to i\Nedge do MCalculating Spring forcesN

begin

vectorxQnodes[edges[i ] .endpoint] .x[nodes[edges[i ] . startpoint ] .x ;
vectoryQnodes[edges[i ] . endpoint ] .y[nodes[edges[i ] . startpoint] .y ;

dQJvector2x]vector2
y ;

fspringQ(d[edges[i ] . linitial) *k (1)/d ;
DxspringQfspring * vectorx ;
DyspringQfspring * vectory ;

if (nodes[edges[i ] .endpoint ]N Q ) or (nodes[edges[i ] . startpoint ] N Q) then

DxspringQDxspring/10;
DyspringQDyspring/10;

end MifN ;
nodes[edges[i ] .endpoint ] .DxQnodes[edges[i ] . endpoint ] .Dx[Dxspring ;
nodes[edges[i ] .endpoint ] .DyQnodes[edges[i ] . endpoint ] .Dy[Dyspring ;
nodes[edges[i ] .startpoint ] .DxQnodes[edges[i ] . startpoint ] .Dx]Dxspring ;
nodes[edges[i ] .startpoint ] .DyQnodes[edges[i ] .startpoint].Dy]Dyspring ;
iQi]1;

end MCalculating Spring forcesN;

Radius1Q100;
Radius2Q400;
for i\1 to i\Nnode do MCalculating gravitational & extra forcesN

begin

DxgravQ0;
DygravQ0;
for j\1 to j\Nnode do
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begin

if j\i then

jQj]1;
break;

end MifN;
vectorxQnodes[i ] .x[nodes[ j ] .x ;
vectoryQnodes[i ] .y[nodes[ j ] .y ;
dQJvector 2

x]vector2
y ;

if d(Radius1 * Radius1 then

Dxgrav QDxgrav](vectorx/d) * k (2) ;
DygravQDygrav](vectory/d) * k (2) ;

end MifN;
if (nodes[ j ]3Q) and (d(Radius2 *Radius2) then

DxgravQDxgrav](vectorx/d ) * k (3) ;
DygravQDygrav](vectory/d ) * k (3) ;

end MifN;
jQj]1;

end MforN;
DdgravQJDx2

grav]Dy2grav ;
nodes[i ] .DxQnodes[i ] .Dx]Dxgrav/Ddgrav ;
nodes[i ] .DyQnodes[i ] .Dy]Dygrav/Ddgrav ;
iQi]1;

end MCalculating gravitational & extra forcesN;

for i\1 to i\Nnode do MAssigning new position value to nodesN
begin

if nodes[i ] .Dx4[5 then

nodes[i ] .xQnodes[i ] .x[5;
else if[5(nodes[i ] .Dx(5 then

nodes[i ] .xQnodes[i ] .x]nodes[i ] .Dx ;
else if 54nodes[i ] .Dx then

nodes[i ] .xQnodes[i ] .x]5;
end MifN;
if nodes[i ] .Dy4[5 then

nodes[i ] .yQnodes[i ] .y[5;
else if [5(nodes[i ] .Dy(5 then

nodes[i ] .yQnodes[i ] .y]nodes[i ] .Dy ;
else if 54nodes[i ] .Dy then

nodes[i ] .yQnodes[i ] .y]5;
end MifN;
iQi]1;

end MAssigning new position value to nodesN;



Figure 8. A key frame with focus nodes Dept, Tech-Report, Staff, Academic, P.Eades. computed by the
traditional spring algorithm. This layout does not clearly show the direction of the exploration
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The parameters, k (1), k (2), k (3), Radius1 and Radius2, may be altered to adjust the layout
for a better view. The best value of these parameters that we should choose mostly
depend on the actual size of graphical nodes and the initial length edges[i ] . linitial of the
edges. A demonstration of this algorithm is available on the web [19].
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5. Examples

In this section, we present some examples from our system OFDAV that show:

z How the modified spring algorithm addresses specific criteria of on-line graph
drawing.

z How we can use OFDAV to navigate the web.

5.1. Examples of Addressing Specific Criteria of
On-line Graph Drawing

For comparative purposes, we also show some graphs drawn by a traditional spring
algorithm [13].

The samples are from a visualization of the web graph, which begins with web
context of the Department of Computer Science and Software Engineering at the
University of Newcastle.

The layout of Fi must show the direction of the exploration : The layout must clearly show the
direction of the exploration of the huge graph. This is done by presenting the queue
Q of focus nodes as a line that is nearly straight; this helps the user to gain an
understanding of where they are, where they are going, and and where they came from.
New nodes appear in one end of the frame and old nodes disappear at the other end.
Figure 9. The same logical frame as Figure 8, but using our modified spring algorithm. Here the focus
nodes are roughly in a straight line and clearly show the direction of the exploration



Figure 10. A key frame with focus nodes Dept, Tech-Report, Staff, Course, Seminars, Research, Theses
computed with the traditional spring algorithm. This layout has five overlaps among the local regions of the

neighborhoods of the focus nodes
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The straightness of this line is induced by the extra forces in the modified spring
algorithm.

Figures 8 and 9 give a comparison of the traditional spring model and our modified
spring model.

Reducing the overlaps among the local regions : Overlaps between the regions occupied by the
local parts of the neighborhoods can lead to user confusion, especially when the
transition between frames deletes some nodes. Our modified spring algorithm tends to
reduce (in most cases, to eliminate) these overlaps.

Figures 10 and 11 compare the traditional spring model and our modified spring
model.
Reducing the number of edge crossings : For tree-like structures (such as web graphs and file
system graphs) the modified spring algorithm tends to reduce or eliminate edge
crossings. The traditional spring algorithm does not.

This is illustrated in Figures 12 and 13.



Figure 11. The same logical frame as in Figure 10, but the drawing is computed with our modified spring
algorithm. There are no overlaps among the local regions of the neighborhoods
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5.2 An Example of a Web Exploration

We now explain our concept of exploratory navigation. Let us imagine that we are
exploring a large snowfield in Antarctica. We cannot see the whole of Antarctica. We
only see the things that are located within a circular area of a certain radius. We call this
circular area the current visual field (see Figure 14). When we walk from position Pi to
Pi]1 , the visual field changes; some new views come into the front of the visual field, and
some are lost at the back. However, since this change of the view is slow and smooth, it
does not disturb the mental map [8] of the explorer.

Our on-line visualization technique is based on this simple natural concept (the
difference is that exploring the snowfield is a geometrical operation and our system is
used for logical exploration of huge graphs). In this paper,

1. ‘Antarctica’ is analogous to ‘the entire graph’.
2. The ‘visual field’ is analogous to ‘logical frame’.
3. The ‘changes of the visual field’ is analogous to ‘transitions between logical

frames’.

Using OFDAV is somewhat akin to walking through this vast unexplored snowfield.
The user can see a small portion of the snowfield (part of the global context), that is, the
area (logically) close to the user. As the user walks, some new nodes come into the view
(logical frame), and some are lost at the back of the view (logical frame).



Figure 12. A key frame with focus nodes Dept, Course computed with the traditional spring algorithm.
This layout has four edge crossings
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To illustrate how the system works, a simple example session is presented in this
section. The system first displays an initial logical key frame according to a user-specified
URL at the beginning of a navigation. It then updates the frame on-line as the user
moves the focus by clicking on a succession of new focus nodes.

Suppose that we start to navigate the web from the first initial frame F1, the web
context of the Department of Computer Science and Software Engineering at
the University of Newcastle (see Figure 11). Then, we incrementally change the
context to the next frame F2 by clicking on the node labeled PostStudents (see
Figure 15). This change is done smoothly through multiple animations preserving the
user’s mental map.

We see that the node PostStudents becomes a new focus node and it is added into the
focus queue; its neighborhood appears and the node Course is deleted from the focus
queue and its neighborhood disappears.

Figure 16 shows one frame further from Figure 15 after the user has selected the node
Mao. Figure 17 shows five frames further into the user’s exploration of web, after
clicking on Links(M) , News, USA.news, CNN and then World. We see that the current



Figure 13. The same logical frame as in Figure 12, but the drawing is computed with our modified spring
algorithm. There are no edge crossings

Figure 14. The concept of exploratory navigation
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Figure 15. This is the frame F2 following the graph in Figure 11. It has been formed after a user
mouse click on the PostStudents node. Here, the queue of focus nodes is Q2\MDept, Tech-Report,

Staff, Seminars, Theses, Research, PostStudentsN
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web subgraph has been smoothly changed from the local department web site to the
CNN web site.

6. Remarks

This paper describes a model and some methods for on-line graph drawing. Our
methods include a modified spring algorithm, which improves on the traditional spring
algorithm in several ways that are suitable for on-line graph drawing. These methods
have been implemented in a system OFDAV for navigating web documents. Unlike
most existing visualization techniques that build an overall geometrical representation of
the graph (the global context) before navigating through it, OFDAV builds the
visualization incrementally, as the user is exploring the huge graph. This feature enables
the user to explore the huge graphs (with, perhaps, billions of nodes) without requiring
the whole graph to be known.



Figure 16. This is the frame F3 following the graph in Figure 15. It has been formed after a user mouse
click on the Mao node. Here, the queue of focus nodes is Q3\MDept, Tech-Report, Staff, Seminars,

Research, PostStudents, MaoN

Figure 17. Five frames further from Figure 16 into the user’s exploration. The frame F8 has a focus queue,
Q8\MPostStudents, Mao, Links(M), News, USA.news, CNN, WorldN
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Our experience with OFDAV indicates that it is an effective navigation tool. Future
directions for this research include consideration of more formal assessment of the
effectiveness of our methods, and the application of the model and methods to create
other systems for navigating large and partially unknown relational structures.
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