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Abstract

Greedy Routing is a class of routing algorithms in which
the packets are forwarded in a manner that reduces the
distance to the destination at every step. In an attempt to
provide theoretical guarantees for a class of greedy routing
algorithms, Papadimitriou and Ratajczak [19] came up with
the following conjecture:

Any 3-connected planar graph can be drawn in the
plane such that for every pair of vertices s and t a
distance decreasing path can be found. A path s =
v1, v2, ..., vk = t in a drawing is said to be distance
decreasing if ‖vi − t‖ < ‖vi−1− t‖, 2 ≤ i ≤ k where
‖ . . . ‖ denotes the Euclidean distance.

We settle this conjecture in the affirmative for the case
of triangulations.

A partitioning of the edges of a triangulation G into 3
trees, called the realizer of G, was first developed by Walter
Schnyder who also gave a drawing algorithm based on this.
We generalize Schnyder’s algorithm to obtain a whole class
of drawings of any given triangulation G. We show, using
the Knaster-Kuratowski-Mazurkiewicz Theorem, that some
drawing of G belonging to this class is greedy.

1 Introduction

With the increasing use of large wireless communica-
tion systems comes an increasing need for reliable and
scalable routing algorithms. Internet routing is accom-
plished using Internet Protocol addresses which are hi-
erarchical and encode topological and geographic infor-
mation about the nodes in the network. Such a protocol
is not possible in an ad-hoc network, such as sensornets,
where little information about geographic proximity or
network topology can be gleaned from node identifiers.

One important family of routing algorithms used
for such networks is Geographic (or Geometric) rout-
ing. This is a family of algorithms that use the geo-
graphic location of the nodes as their addresses. See,
for instance [15, 11, 2, 8]. One such algorithm is the
Euclidean Greedy Routing algorithm which is conceptu-
ally quite simple: Each node forwards the packet to the
neighbor, i.e., a node it can communicate directly with,
that has the smallest Euclidean distance to the destina-
tion. This algorithm has the disadvantage of not being
able to deal with lakes or voids in the network, i.e.,
nodes which have no neighbor closer to the destination.
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To deal with this, variants of the algorithm (such as face
routing, which involves routing around faces) have been
proposed, [15, 11].

Geometric routing has the following two drawbacks:
(i) It needs the global position of every node in the
network, (ii) it relies entirely on the global position
and as such cannot account for local obstructions or
the topology of the network. Since GPS units are
quite expensive in terms of both money and power
requirements, it is quite a restrictive limitation to
require every node in the network to have one.

Both the above issues were addressed in [20], where
a variant of greedy routing which just uses the local
connectivity information of the network without need-
ing the global position of any node, was discussed. The
algorithm first computes fictitious or virtual coordinates
for each node, i.e., it draws the graph of the network
(where each node in the network is represented by a
vertex of the graph and two vertices are adjacent iff the
pair of nodes they represent can communicate directly)
on the Euclidean plane and routes greedily using these
locations. The authors obtain experimental evidence
showing that this approach makes greedy routing more
reliable. However no theoretical guarantees were ob-
tained.

In a bid to place this approach on a more solid
theoretical footing, Papadimitriou and Ratajczak [19]
investigated classes of graphs on which greedy routing
(without having to rely on variants like face routing)
could be guaranteed to work, i.e., graphs which can be
drawn in the plane without lakes or voids. They came
up with the following conjecture:

Let a distance decreasing path in a drawing of a
graph be a path s = v1, v1, v2, . . . , vk = t such that
‖vi − t‖ < ‖vi−1 − t‖, 2 ≤ i ≤ k where ‖ . . . ‖ denotes
the Euclidean distance.

Conjecture 1. ([19]) Any 3-connected planar graph
can be drawn1 on the Euclidean plane such that there
exists a distance decreasing path between every pair of
vertices of the graph.

1Note that the conjecture in [19] uses “embed” instead of
“draw”. To be consistent with the Graph Drawing literature,

we use “draw”.
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Such a drawing is called a Greedy Drawing of
the graph. It is easy to see that using the greedy
drawing of a graph (assuming such a drawing exists) as
the virtual coordinates of the vertices guarantees that
greedy routing will always work.

1.1 Our Results We settle Conjecture 1 in the
affirmative for the case of planar triangulations and thus
obtain the first non-trivial class of graphs for which this
class of greedy routing algorithms can be guaranteed to
work.

We show in fact, that a planar drawing of any given
triangulation can be obtained, i.e., one in which no pair
of edges cross.

The result is obtained by applying the Knaster-
Kuratowski-Mazurkiewicz Theorem, which is known to
be equivalent to the Brouwer Fixed Point Theorem.
We believe that the technique used in obtaining the
result might be of independent interest and might prove
helpful in showing the existence of plane drawings with
other properties.

Note that greedy drawings can be trivially seen
to exist for many simple classes of graphs, like graphs
with Hamiltonian circuits, all 4-connected planar graphs
(since they have a Hamiltonian circuit by a theorem of
Tutte [24]) etc. It is not very difficult to show that the
Delaunay triangulation of any set of points in the plane
is also greedy. But thus far no non-trivial class of graphs
with this property was known.

2 Preliminaries and Related Work

Given a n-vertex graph G(V,E), a drawing of G is
a mapping of the vertices of G to points and of the
edges of G to curve segments (with the images of the
corresponding vertices as end points) in the plane. We
consider only those drawings in which the edges are
mapped to straight line segments and so the drawing
is fully specified by the images of the vertices.

Recall that a plane graph is an abstract planar
graph whose embedding has been fixed, using, say the
Hopcroft-Tarjan algorithm [9]. In the rest of the paper
we assume that G is plane triangulation. We consider
only planar drawings of graphs, i.e., drawings in which
no pair of edges cross, in this paper. So any reference
to a drawing of a graph must be taken to mean a planar
straight-line drawing.

2.1 Drawing Planar Graphs In The Plane An
overview of graph drawing algorithms can be obtained
from [23, 18]. We describe some well-known algorithms
for obtaining planar straight-line drawings of planar
graphs:

1. Rubber Band Embedding [25]: This algorithm has
a elegant physical interpretation: Fix the positions
of the vertices of some face of the graph and replace
all other edges by springs (or “rubber bands”).
It can be shown that if the graph is 3-connected
and planar then the equilibrium position of the
nodes gives a planar straight line drawing. Many
interesting generalizations of this approach have
been obtained, see for instance [16]. The drawback
of this method is that the size of the grid required
for the drawing may be large (exponential in the
number of vertices).

2. Canonical Ordering [4]: This result showed for the
first time that a planar straight-line drawing of a
planar graph could be obtained on grid of poly-
nomial (in fact O(n) × O(n)) size. This approach
was used in [10] to obtain drawings satisfying vari-
ous bounds on the minimum angle, bends, grid size
etc.

3. Schnyder’s Realizers [22]: The author describes
an elegant algorithm for partitioning the edges of
a triangulation into three trees and obtaining a
planar drawing (on a O(n) × O(n) grid) of the
graph based on this. Our result uses the techniques
developed here and so this approach is described in
detail in Section 4. This was generalized to all 3-
connected planar graphs in [5]. Also see, [21, 7, 1,
6].

On a related note, it was shown recently, [13], that
any graph has a greedy drawing in the Hyperbolic plane.
But this might require an exponential sized grid, i.e.,
Ω(n) bits might be required to store the coordinates of
a single vertex, [12]. This has been further explored
in [17]. In contrast, examples of graphs with no greedy
drawing in the Euclidean plane were obtained in [19].

3 Outline

We describe the approach of [22] in Sections 4 and 5.
The details of how the edges of a triangulation can be
partitioned into three trees is described in the former
section and the latter section describes how a drawing of
the triangulation can be obtained from this partitioning
and also describes some interesting geometric properties
of these drawings.

In Section 6, we investigate greedy paths in draw-
ings and show that any drawing in which every face is
good, Definition 2, is greedy. In Section 7, we prove the
main result of the paper that there exists a greedy draw-
ing of the triangulation, by showing that there exists a
drawing in which every face is good.

In Section 8, we prove a technical result on the sum
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of weights of all bad faces of a drawing, which is needed
for proving the main result.

4 Schnyder Realizers of a Triangulation

We designate a (triangular) face f0 of G as the exterior
face. All vertices (edges) not belonging to f0 are called
the interior vertices (edges). Let the vertices of f0 be
P0, P1 and P2. We define the order (P0, P1, P2) to be
the “counter-clockwise” (CCW) order.
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P
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P
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Figure 1: A triangulation and its realizers. The top left
figure contains all three trees together and the three
edges of the exterior face, which do not belong to any
tree. The remaining figures show each of the three trees
separately.

Theorem 4.1. ([22]) Given a plane triangulation
G(V,E), there exist three directed edge-disjoint trees,
T0, T1 and T2, called the realizer of G, Figure 1, such
that:

1. Ti is rooted at Pi, i ∈ {0, 1, 2} and contains all
vertices of G except Pi+1 and Pi−1 (the indices are
mod 3).

2. All edges of Ti are directed towards the root and ev-
ery edge of G except those belonging to the exterior
face are contained in exactly one Ti.

3. Each interior vertex, v, has exactly 3 outgoing
edges, one for each Ti. The edge belonging to T0 is
followed by the one belonging to T1 which is followed
by the one in T2 in CCW order around v, Figure 2a.

Note that there might be any number (including
zero) of incoming edges of each Ti at any vertex.

Let v ∈ G be an interior vertex. Then, it follows
from the above that there exist (directed) paths Pi(v)
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Figure 2: (a)The order of the edges belonging to
different trees around an internal vertex v. There are
exactly three outgoing edges, one belonging to each tree.
There can be any number (including 0) of incoming
edges. (b) The paths in Ti from v to Pi are vertex
disjoint and divide the graph into three regions. (c)
Obtaining Realizers from the Canonical Order. Note
that m ≥ 2 since Gk+1 must be biconnected. If m = 2
then the edges shown directed towards vk+1 will not
exist.

from v to Pi in Ti, i = 0, 1, 2 called the canonical paths of
v. From the fact the Ti are edge-disjoint and the order
of the edges around v, it is clear that Pi(v) and Pj(v)
must be vertex disjoint (except for v itself which appears
on all three paths) if i 6= j. Hence the Pi(v), i = 0, 1, 2
divide the graph G into three “regions”, R0(v), R1(v)
and R2(v), as shown in Figure 2b.

4.1 Schnyder Realizers from Canonical Order-

ing Let f0 = (P0, P1, P2) be the external face of
G. An ordering of the vertices v1 = P0, v2 =
P1, . . . , vi, . . . , vn = P2 is called a Canonical Order-
ing [4], if:

• The graph Gk induced by vertices v1, v2, . . . , vk is
biconnected and the boundary of its exterior face
is a cycle Ck containing edge P0P1.

• Vertex vk+1 lies in the exterior face of Gk and its
neighbors form a subinterval (of length at least 2)
of the path Ck − P0P1.

A simple way of using the canonical ordering to
find the realizers of G was obtained in [4] and [3]. We
describe this below:

We process the vertices in the decreasing order of
their rank in the canonical ordering. First, we add all
internal edges incident to vn(= P2) to tree T2 and orient
them towards vn. Let the neighbors of vk+1 in Ck be
v′
1, v

′
2, . . . , v

′
m. We add the edge vk+1v

′
1 to tree T0 and

orient it towards v′
1. The edge vk+1v

′
m is added to tree

T1 and oriented towards v′
m. All other edges (if any) are

added to tree T2 and oriented towards vk+1, Figure 2c.
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5 Schnyder Drawings and Their Properties

Let each internal face fi be assigned a non-negative
weight wi such that

∑2n−5
i=1 wi = 1. Let wRi(v) be the

sum of weights of all faces in region Ri(v), Figure 2b.
We can obtain a drawing of G in the following way:

Place vertex v at the point
(

wR0(v), wR1(v), wR2(v)

)

.

Recall that we only deal with straight line drawings
and so the drawing is specified by the positions of the
vertices. Since the total weight of all faces is 1, every
vertex of G is placed on the x + y + z = 1 plane.
Notice that the external vertices P0, P1 and P2 are
always placed at the points (1, 0, 0), (0, 1, 0) and (0, 0, 1)
irrespective of how the weights of the internal faces are
assigned and that these points determine an equilateral
triangle (on the x + y + z = 1 plane). Also notice that
all internal vertices are placed inside this equilateral
triangle.

The drawing obtained by the above method is
defined to be a Schnyder Drawing of G.

The set of solutions to the equation
∑2n−5

i=1 wi = 1
such that the wi are non-negative can be represented by
the unit simplex S in 2n − 6 dimensions, with 2n − 5
vertices. Hence, for each point p ∈ S, a Schnyder
drawing of G can be obtained.

The following theorem, while a generalization of the
result proved in [22], follows directly from the proofs
given there.

Theorem 5.1. ( [22]) In any Schnyder Drawing of a
triangulation G, the edges are non-intersecting, i.e., the
drawing is planar.

Definition 1. A non-degenerate Schnyder Drawing
is defined to be one obtained by assigning strictly positive
weights to the faces.

In the rest of the paper, we use the same notation
for a vertex v of G and the point in the plane it is drawn

on. The ray
−−−→
P0P1 is defined to have a slope of 0◦ and

all angles are measured counter-clockwise from this ray.

So, the ray
−−−→
P0P2 has slope 60◦,

−−−→
P2P1 has slope 300◦

and so on. Recall that all drawings we consider (and
the points P0,P1 and P2) lie on the x + y + z = 1 plane.

The following is a key property of Schnyder draw-
ings.

Lemma 5.1. (The Three Wedges Property [22, 21])

In every Schnyder drawing the three outgoing edges at
an internal vertex v have slopes that fall in the intervals
[60◦, 120◦] (T2), [180◦, 240◦] (T0) and [300◦, 360◦] (T1),
with exactly one edge in each interval, as shown in
Figure 3a.

Further, if the drawing is non-degenerate, no edge
has slope which is a multiple of 60◦ and every edge has
positive length.

In the rest of the paper, we prove many propo-
sitions specifically for non-degenerate Schnyder Draw-
ings. Extending them to degenerate Schnyder Drawings
would make the proof quite messy as degenerate draw-
ings might have zero length edges. Also, non-degenerate
drawings are sufficient for our purpose. So we disregard
degenerate drawings.
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Figure 3: (a) The shaded 60◦ wedges contain exactly one
outgoing edge each. The trees containing the edges are
marked. (b) All incoming edges (if present) fall in the
shaded wedges. (c) The equilateral triangle determined
by lines through v and w with slopes 0◦, 60◦ and 120◦ is
free of other vertices. A similar result holds if edge uw

were to belong to T1 or T2 (with the equilateral triangle
changing appropriately) (d) The enclosing triangle of a
face.

Lemma 5.2. The incoming edges (if present) have
slopes in the following ranges T0 : [0◦, 60◦], T1 :
[120◦, 180◦] and T2 : [240◦, 300◦], Figure 3b.

Proof. Let v′v be an edge directed from v′ towards v.
Applying Lemma 5.1 at v′, the result follows.

Recall that any number (up to linear) of incoming
edges might be present at any vertex.

Lemma 5.3. (Enclosing Triangle Property [22, 21]) 1.
Given a vertex v and an outgoing edge (v, w) be-
longing, without loss of generality (wlog), to T0, the
equilateral triangle formed by drawing lines with
slopes of 0◦, 60◦ and 120◦, as shown in Figure 3c
is free of any other vertices. A similar result holds
if (v, w) belongs to T1 or T2.

2. For any face f = (u, v, w) the triangle formed by
drawing similar lines as shown in Figure 3d is also
free of other vertices. This triangle is called the
enclosing triangle of f .

Proof. (1) follows from Lemma 5.1. (2) follows from (1)
and the fact that the drawing is planar.
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6 Greedy Paths in Schnyder Drawings

A face of the triangulation is said to be cyclic if its
edges form a directed cycle and is said to be acyclic
otherwise. Any cyclic face of a graph can be stacked by
adding a vertex adjacent to the three vertices of the face
and adding the new edges to each of the trees as shown
in Figure 4a. This breaks the face into three acyclic
faces. After a greedy drawing has been found, the new
vertex can be deleted without affecting the greedy paths
between the other vertices. Hence, we will assume from
now on that every face in the triangulation is acyclic.

Notice that any acyclic face must have a vertex (like
vertex t in face (u, t, v) in Figure 4a) with two outgoing
face edges which must belong to different trees. The
face is said to belong to tree Ti if these two outgoing
edges belong to trees Ti−1 and Ti+1.

u
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u
v

x’

x
z

(a) (b)

Figure 4: (a) The cyclic face (u, v, w) is stacked by
adding vertex t and its incident edges. The edge tu

is added to the same tree as wu, edge tv the same tree
as uv and tw the same tree as vw. (b) The triangle
(u, x, x′) is equilateral. ‖v − z‖ < ‖u − z‖ irrespective
of where z lies in the shaded region and where v lies on
xx′.

The following lemma will prove useful:

Lemma 6.1. Let u be some vertex and uv an edge
incident to it. Consider a 60◦-wedge at u containing
the edge uv, as shown in Figure 4b and let z be any
vertex in the shaded region. The triangle (u, x, x′) is
equilateral and v ∈ xx′ and assume that z 6∈ xx′.

Then, ‖v − z‖ < ‖u − z‖.

Proof. Let l be the perpendicular bisector of uv. It is
easy to see that z 6∈ l and it lies on the same side of l

as v. Hence, it follows that ‖v − z‖ < ‖u − z‖.

To show that a drawing of G is greedy, it clearly
suffices to show the following:

For every pair of (ordered) distinct vertices
u, v ∈ V , there exists some neighbor of u, say
u′ such that ‖u − v‖ > ‖u′ − v‖.

In the rest of the paper we will show that a non-
degenerate Schnyder drawing of G exists which satisfies
the above property.
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Figure 5: (a) An acyclic face with its active region
shaded. The thin lines have slopes that are multiples
of 60◦. The active region at u is bounded by rays with
slope 180◦ and 300◦. (b) Note that v and v′ need not be
adjacent. (c) Vertices u0, u and u1 form a face. Edge
u0u1 could be directed either way. (d) The greedy region
of face f = (u, v, w) is shown shaded.

Let f = (u, v, w) be an acyclic face as shown in
Figure 5a. Let the active region of 6 uvw, denoted by
A 6 uvw, be the wedge with sides of slopes 180◦ and 300◦

at vertex u. This is shown shaded in Figure 5a.

Lemma 6.2. Let f = (u, v, w) be an acyclic face of G

and in some non-degenerate Schnyder Drawing of G,
let z be a vertex in the active region of 6 uvw. Then,
‖v − z‖ > min(‖u − z‖, ‖w − z‖).

Proof. From Lemma 5.1, it follows that u lies below the
horizontal line (denoted by l in Figure 5a) through w.

Since z lies in the active region of vertex u, only two
possibilities can arise:

• z lies in the wedge bounded by rays of slope
180◦ and 240◦ at vertex v (the wedge x1vx2 in
Figure 5a): From Lemma 6.1, it follows that ‖v −
z‖ > ‖u − z‖.

• z lies in the wedge bounded by rays of slope
240◦ and 300◦ at vertex v (the wedge x2vx3 in
Figure 5a): It follows that z must lie below the
horizontal line through w since u and so the whole
active region lies below this line.

Now applying Lemma 6.1 again it follows that
‖v − z‖ > ‖w − z‖.

Hence, in every case ‖v−z‖ > min(‖u−z‖, ‖w−z‖).
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Let u and v be a pair of non-adjacent vertices. It
follows that v lies in one of three regions R0(u), R1(u) or
R2(u) (or their boundaries), Figure 2b. Assume, wlog,
that v lies in region R2(u), i.e., the region bounded
by the edge P0P1 of the external face and the paths
Pi(u), i = 0, 1 from u to P0 and P1, Figure 5b. The
path P2(v) from v to P2 must intersect either P0(u) or
P1(u). Assume wlog, that it intersects P0(u) and let
v′ = P2(v)∩P0(u). Let u0 (u1) be the neighbor of u on
P0(u) (P1(u)).

The following possibilities arise:

Case I v′ = u: Let P2(v) = (v = v0, v1, v2, . . . , vk−1, vk =
v′ = u, vk+1, . . . , P2). It follows from Lemmas 6.1
and 5.2 that ‖u − v‖ > ‖vk−1 − v‖ in every non-
degenerate Schnyder Drawing of G.

Case II u has one or more edges directed inwards lying
between the edges uu0 and uu1 in the embedding:
Let the edge following uu0 (in CCW direction) be
uu′, Figure 5b. It follows from Lemma 5.1 that v

lies in the active region of 6 u0uu′.

Hence from Lemma 6.2 it follows that either ‖u0 −
v‖ < ‖u − v‖ or ‖u′ − v‖ < ‖u − v‖ in every non-
degenerate Schnyder drawing.

Case III The vertices u,u0 and u1 form a (acyclic) face of
G, Figure 5c: In this case there might exist some
Schnyder drawings in which for every neighbor ui

of u, ‖ui − v‖ > ‖u − v‖. But we will show
below that there must exist some non-degenerate
Schnyder drawing in which ‖u0 − v‖ < ‖u − v‖.

The greedy region of a face f = (u, v, w) is the
region bounded by the edge vw and the paths P0(v) and
P1(w) as shown in Figure 5d. Note that even though
the greedy region depends on the drawing, the set of
vertices falling in this region is fixed by the realizer of
G.

Definition 2. Let f = (u, v, w) be a triangular face
with edges uv and uw directed away from u, Figure 5d,
and let ǫ > 0 be some constant depending only on the
number of vertices of G, whose value will be fixed later.
Then, in a Schnyder Drawing of G, f is said to be good

if

I The length of every edge of f is at least
√

ǫ.

II For every vertex z in the greedy region:

‖u − z‖2 − ‖v − z‖2 ≥ ǫ if P2(z) ∩ P0(u) 6= ∅
‖u − z‖2 − ‖w − z‖2 ≥ ǫ if P2(z) ∩ P1(u) 6= ∅

and is said to be bad otherwise.

Note that for very vertex z in the greedy region
exactly one of P2(z) ∩ P0(u) and P2(z) ∩ P1(u) is non-
empty. Clearly, a non-degenerate drawing in which
every face is good, is greedy.

The following Lemma is not used directly in the
paper but is helpful because it provides some intuition
as to why the Schnyder drawing framework can lead to
greedy drawings of graphs.

Lemma 6.3. 2 Given any two vertices u, v ∈ G, then in
any non-degenerate Schnyder drawing of G, there exists
a neighbor of u, say u′ and a neighbor of v, say v′ such
that ‖u − v‖ > min(‖u′ − v‖, ‖u − v′‖).

Proof. Follows from Lemmas 5.1 and 6.1.

7 The Main Result

The following theorem will prove useful:

Theorem 7.1. (Knaster-Kuratowski-Mazurkiewicz [14])

Let a d-simplex with vertices {v0, . . . , vd}, be covered
by closed sets Ci, i ∈ {0, . . . , d} such that the following
covering condition holds:

For any Q ⊆ {0, . . . , d} the face spanned by the
vertices {vi|i ∈ Q} is covered by

⋃

i∈Q Ci.

Then,
⋂

i∈{0,...,d} Ci 6= ∅.

This theorem is known to be equivalent to the Brouwer
Fixed Point Theorem.

The main result is the following:

Theorem 7.2. Given an n-vertex plane triangulation
G, there exists a non-degenerate Schnyder drawing of G

which is greedy.

Proof. Recall that for each point p ∈ S, the unit
simplex with 2n − 5 vertices (in 2n − 6 dimensions),
a Schnyder Drawing of G can be obtained.

We define good sets Gf1
, . . . , Gf2n−5

where
Gfi

⊆ S ∀i, in the following way: Let w =
(w1, w2, . . . , w2n−5) ∈ S. Then w ∈ Gfi

iff in the Schny-
der drawing of G corresponding to w, the face fi is good.
Note that the definition of these good sets depends on
the value of ǫ (Definition 2).

In Section 8.1, it is shown that in any Schnyder
drawing of G the sum of the weights of all the bad
faces is always strictly less than 1, if ǫ is small enough
(Theorem 8.2). Let p = (p0, . . . , p2n−5) ∈ S lie in the
interior of some k-face of S. Wlog, we can assume that
p0, p1, . . . , pk > 0 and pk+1 = . . . = p2n−5 = 0. Since

2This lemma holds more generally for all 3-connected planar
graphs and not just triangulations. We will not prove this

generalization here as we deal only with triangulations.
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the sum of weights of bad faces is always less than 1, it
follows that some face fi where i ∈ [0, k] must be good
in the drawing corresponding to point p. Hence p ∈ Gfi

and so the KKM covering condition is satisfied.
It is easy to see that the sets Gfi

are closed. The
condition that the length of the edges of fi are at least√

ǫ can be expressed in the form P ≥ ǫ where P is
a quadratic polynomial, equation 8.1. It is not very
difficult to see that Condition II in Definition 2 can
also be expressed as a polynomial (in fact quadratic)
inequality. Hence, the set Gfi

can be expressed as
the set of all points satisfying some weak polynomial
inequalities. Hence Gfi

is closed.
From this it follows that the Gfi

satisfy the condi-
tions of Theorem 7.1.

Hence,
⋂

i∈{1,...,2n−5} Gfi
6= ∅. Let g ∈

⋂

i∈{1,...,2n−5} Gfi
. It follows that every face is good in

the Schnyder drawing corresponding to g, which implies
that this drawing is greedy.

It is possible that the drawing corresponding to
g is degenerate. But since ǫ > 0 and the drawing
varies continuously with the set of face weights, we can
always pick another point g′ close enough to g such that
the drawing corresponding to g′ is non-degenerate and
greedy.

8 Schnyder Drawings and the Weights of Faces

a

b

c

de

u

v
x

y

f w
w’

0
P P

1

P
2

Figure 6: The sum of weights of faces in different regions
are denoted by a, b, c, d, e and f . Note that w and w′

could possibly be the same vertex, depending on how
the edge wv is directed. The analysis below remains
the same in either case.

In this section we show that sum of weights of the
bad faces in a drawing of the triangulation is always
strictly less than 1 for ǫ small enough.

Consider the face F = (u, v, w) in Figure 6. The
sum of weights of faces in various regions are marked.
All paths shown in the figure are canonical paths (Pi(·))

starting from some vertex. Note that b is the weight of
the region demarcated by uvw′w where w and w′ could
possibly be the same vertex.

The coordinates of the the points the vertices are
mapped to are given below. Recall that the graph is
being drawn on the x + y + z = 1 plane, so the points
lie on this plane. The vectors corresponding to various
edges are also given below. Note that u0 represents the
first coordinate of vertex u, x1 represents the second
coordinate of vertex x and similar is the case with y2.

u = (u0, x1 + a + f, y2 + b + c + d + e),
v = (u0 + a + b, x1 + f, y2 + c + d + e),
y = (u0 + a + b + c + d + f, x1 + e, y2).

−−−→
u − y = (−a − b − c − d − f, a + f − e,

b + c + d + e),−−−→
v − y = (−c − d − f, f − e, c + d + e),−−−→
u − v = (−a − b, a, b).

It follows that the length of the edge uv is given by:

(8.1) ‖u − v‖2 = 2(a2 + b2 + ab)

Lemma 8.1. Let Wuvw be the weight of face (u, v, w).
If Wuvw ≥

√

ǫ
2 , every edge of face F has length at least√

ǫ.

Proof.

‖u − v‖2 = 2(a2 + b2 + ab) ≥ 2W2
uvw ≥ ǫ(8.2)

An identical argument applies to edge uw. For edge
vw, notice that from Lemma 5.1, 6 vuw ≥ 60◦. Hence
the edge vw is longer than at least one of the other two
edges.

Note that b ≥ Wuvw since b is the weight of all faces
in region uvw′w.

Theorem 8.1. Assuming that b ≥
√

ǫ
2 , the following

conditions are necessary (but not sufficient) for ‖u −
y‖2 − ‖v − y‖2 < ǫ.

a > b(8.3)

e > b(8.4)

a <
√

a − b and b <
√

a − b(8.5)

Proof.

‖u − y‖2 − ‖v − y‖2 < ǫ,

=⇒ a(a + b + c + d + 2f − e)

+b(b + 2c + 2d + f + e) <
ǫ

2
.(8.6)
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Since b ≥
√

ǫ
2 and all variables are non-negative, we

must have:

a + b + c + d + 2f − e < 0,

=⇒ b < e.

Rearranging the terms of equation 8.6, we obtain:

a(a + b + c + d + 2f) + b(b + 2c + 2d + f)

+ e(b − a) <
ǫ

2
,

=⇒ b − a < 0 =⇒ a > b.

for the same reason as before.
Rearranging the terms of equation 8.6 again we

obtain:

a(a + b + c + d + 2f) + b(b + 2c + 2d + f)

+ e(b − a) <
ǫ

2
,

=⇒ a2 + e(b − a) < 0,

=⇒ a2 < e(a − b),

=⇒ a <
√

a − b (since e < 1).

8.1 The Maximum Weight of Bad Faces Let
point w = (w1, . . . , w2n−5) ∈ S be such that in the
Schnyder drawing, every face fi with weight wi > 0 is
bad. Then, the faces can be divided into three types:

Type A : The face has weight 0 and can be either good or
bad.

Type B : The face has weight strictly less than
√

ǫ
2 and is

bad because either one of its edges is shorter than
ǫ (and so violating Condition I in Definition 2) or
because it violates Condition II in Definition 2.

Type C : The face has weight at least
√

ǫ
2 and is bad

because it violates Condition II in Definition 2.

If ǫ is small enough, then “most” of the weight must
be present in faces of Type C.

Theorem 8.2. In any Schnyder drawing of G, the sum
of weights of all faces of type B and C is strictly less
than 1.

We first give a brief description of the main idea
behind the proof.

We try to find a point in S such that, in the
Schnyder drawing corresponding to it, every face with
positive weight is bad. But we run into a contradiction,
thus showing that such a point cannot exist.

Let v1, v2, v3, . . . vn be the canonical order of G

where v1 and v2 are the vertices of the bottom edge of

the external face and vn is the topmost node. We start
with the edge v1v2 and construct the triangulation by
adding vertices one by one according to the canonical
order. This also gives us an ordering on the faces. As
faces are added, we try to assign weights to them in such
a way that no face with positive weight is good. This
condition places an upper bound on the weight each face
can be assigned. Once we are done with all faces, we
show that the sum of weight of all faces (good or bad)
is forced to be less than 1, which is a contradiction.
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Figure 7: (a) The first faced added. Note that the vertex
P2 and the edges P2P0 and P2P1 have not yet been
added to the graph and are shown only for clarity.(b)
and (c) Faces obtained when the vertex vk+1 is added to
Gk. Note that the path from vk+1 to P2 is not present
in Gk and is shown only for clarity.(d) Note that only
face fl = (vk+1, tl, tl−1) is shown to avoid clutter. (e)
Only face f ′

l = (vk+1, tl′ , tl′−1) is shown for the same
reason. Note that fl′ lies to the right of fl.

Proof. Proof by contradiction. We try to find an
assignment of weights to the faces such that every face
with positive weight is bad and show that this would
require the sum of weights of all faces to be less than 1,
which is impossible.

Let v1, v2, v3, . . . vn be the canonical order of G

where v1 and v2 are the edges of the bottom edge of
the external face and vn is the topmost node.

We start with the edge v1v2 and build the graph by
adding vertices one by one according to the canonical
order. The vertex v3 and the face, f1, it forms with v1

and v2 are shown in Figure 7a. Since the greedy region
of v3 contains no vertices, it is clear that f1 cannot be
a type C face. Hence wf1

<
√

ǫ
2 .

Let Gk be the graph induced by the vertices
v1, v2, . . . , vk and let weight of all faces of Gk be Wk.
Assume that Wk → 0 as ǫ → 0. This is clearly satisfied
by W3 = wf1

<
√

ǫ
2 . Let W = max

(

Wk,
√

ǫ
2

)

. We will
show that Wk+1 also satisfies this property.
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We now add vk+1 to Gk and try to assign weights
to the new faces formed. Let Wnew be the maximum
weight that can be assigned to the new faces while
ensuring that every face with positive weight is bad.
We have the two following possibilities:

Case I : vk+1 has only two neighbors in Gk. Let them
be vertices u and w as shown in Figure 7b. In this
case, the only new face is (u, vk+1, w) which belongs
to tree 2. Then it follows from equation 8.4 that
Wnew < W , as otherwise the face is good.

Case II : vk+1 has more than two neighbors, say
u, t1, . . . , tm and w as shown in Figure 7c. The new
faces are f1 = (u, t1, vk+1) which belongs to tree
1, fm = (vk+1, tm, w) which belongs to tree 0 and
m− 1 faces of the form fi = (ti, vk+1, ti+1) each of
which may belong to either tree 0 or 1. Let wfi

be
the weight of face fi.

Case i : None of the new faces have weight more than
W . Hence, Wnew < nW as m + 1 < n.

Case ii :At least one face, say belonging to tree 1, has
weight more than W , Figure 7d.

Let l ∈ [1..m] be the maximum value such
that: (a) wfl

> W and (b) fl belongs to tree
1. Let l′ ∈ [l + 1..m] be the minimum value
such that:(a) wf

l′
> W and (b) fl′ belongs to

tree 0.

Of course such an l′ need not exist. If it does
not, then, in Figure 7d every face in the region
h has weight at most W . By equation 8.3
applied 3 to face fl, g < h if fl is to be
bad. Every new face must fall in one of the
regions g or h. Since h < nW , we have
Wnew < g + h < 2nW (since m + 1 < n).

If l′ does exist, then by equation 8.3, applied
to face fl′ , g′ > h′ in Figure 7e. Note that is
possible to have l = 1 and/or l′ = m.

Let S(g), S(g′), S(h) and S(h′) denote the set
of faces in the regions so marked in Figure 7d
and 7e. Since fl′ lies to the right of fl, it is
clear that S(g) ⊂ S(g′) and S(h′) ⊂ S(h) and
by equation 8.3 applied to faces fl and fl′ ,
h > g and g′ > h′.

Let Dgg′ = S(g′)\S(g) and Dhh′ =
S(h)\S(h′) and Wgg′ (Whh′) be the weight of

3Note that the face shown in Figure 6 in the derivation of

equation 8.3 belongs to tree 2 while face fl and f ′

l
belong to

trees 0 and 1. Of course this does not really change anything
as the same argument applies. To see how equation 8.3 (or

equation 8.5) applies to face fl, compare Figures 6 and 7d where

vertices vk+1, tl, tl−1 map to v, u, w in that order.

the faces in Dgg′ (Dhh′). We have:

g + Wgg′ = g′ and h′ + Whh′ = h

=⇒ Wgg′ + Whh′ > g′ − h′ since h > g

and Wgg′ + Whh′ > h − g since g′ > h′

The only new faces in the sets Dgg′ and Dhh′

are fi, i ∈ [l + 1, l′ − 1]. Each of these faces
have weight at most W (by definition of l and
l′). Since the sum of all the old faces is at most
W , we have: Wgg′ + Whh′ < 2(W + nW ) =
2(n + 1)W .

From equation 8.5 applied to faces fl and fl′ ,
it follows that g, g′, h, h′ <

√

2(n + 1)W .

Hence Wnew < max(2nW, c
√

nW ) where c is some
small constant. Since W → 0 as ǫ → 0, we can
assume that ǫ is small enough that 2nW < 1 and so
Wnew < c

√
nW . Recall that W = max

(

Wk,
√

ǫ
2

)

.

It follows that Wk+1 = Wk+Wnew < W+c
√

nW <

c′
√

nW . Hence Wk+1 < c′
√

n max(Wk,
√

ǫ
2 ).

Notice that Wk+1 → 0 as ǫ → 0.

Hence it easy to see that by picking ǫ small enough,
we can make Wn < 1 (in fact, we can make
Wn → 0). But the total weight of all faces must be
exactly 1 and so this gives us a contradiction and
the result follows.

9 Conclusions

We have been able to show that every triangulation has
a planar greedy drawing in the Euclidean plane. As for
algorithmic questions, the following iterative approach
works quite well in practice:

• Let Wi = (w0, w1, . . . , w2n−5) ∈ S be the weights
of the faces in iteration i.

• Let Wi+1 = 1
W

(

w′
0, w

′
1, . . . , w

′
2n−5

)

where w′
j = wj

if fj is good in the drawing corresponding to Wi

and w′
j = 2wj otherwise and W is the normalizing

factor such that Wi+1 ∈ S.

• For i = 0, let w0 = w1 = . . . = w2n−5 = 1
2n−5 .

This algorithm converges quite fast, but so far no
theoretical bounds are known. We are confident that
good bounds can be obtained.
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