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Abstract

Greedy Routingis a class of routing algorithms in which the packets are forwarded
in a manner that reduces the distance to the destination at every step. In an attempt to
provide theoretical guarantees for a class of greedy routing algorithms, Papadimitriou
and Ratajczak [PR05] came up with the following conjecture:

Any 3-connected planar graph can be drawn in the plane such that for every
pair of verticess and t a distance decreasingpath can be found. A path
s = v1, v2, ..., vk = t in a drawing is said to bedistance decreasingif ‖vi −
t‖ < ‖vi−1 − t‖, 2 ≤ i ≤ k where‖ . . . ‖ denotes the Euclidean distance.

We settle this conjecture in the affirmative for the case of triangulations.

A partitioning of the edges of a triangulationG into 3 trees, called therealizerof G,
was first developed by Walter Schnyder who also gave a drawingalgorithm based on
this. We generalize Schnyder’s algorithm to obtain a whole class of drawings of any
given triangulationG. We show, using the Knaster-Kuratowski-Mazurkiewicz Theo-
rem, that some drawing ofG belonging to this class is greedy.
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1 Introduction

With the increasing use of large wireless communication systems comes an increasing need for reliable and
scalable routing algorithms. Internet routing is accomplished using InternetProtocol addresses which are
hierarchical and encode topological and geographic information aboutthe nodes in the network. Such a
protocol is not possible in anad-hocnetwork, such as sensornets, where little information about geographic
proximity or network topology can be gleaned from node identifiers.

One important family of routing algorithms used for such networks isGeographic (or Geometric)rout-
ing. This is a family of algorithms that use the geographic location of the nodes as their addresses. See,
for instance [KWZZ03, KK00, BMSU99, GGH+01]. One such algorithm is theEuclidean Greedy Routing
algorithm which is conceptually quite simple: Each node forwards the packetto theneighbor, i.e.,a node it
can communicate directly with, that has the smallest Euclidean distance to the destination. This algorithm
has the disadvantage of not being able to deal withlakesor voidsin the network,i.e.,nodes which have no
neighbor closer to the destination. To deal with this, variants of the algorithm (such asfacerouting, which
involves routing aroundfaces) have been proposed, [KWZZ03, KK00].

Geometric routing has the following two drawbacks: (i) It needs the global position of every node in
the network, (ii) it relies entirely on the global position and as such cannot account for local obstructions
or the topology of the network. Since GPS units are quite expensive in terms of both money and power
requirements, it is quite a restrictive limitation to require every node in the network to have one.

Both the above issues were addressed in [RPSS03], where a variant of greedy routing which just uses
the local connectivity information of the network without needing the global position of any node, was
discussed. The algorithm first computes fictitious orvirtual coordinatesfor each node,i.e., it draws the
graph of the network (where each node in the network is represented bya vertex of the graph and two vertices
are adjacent iff the pair of nodes they represent can communicate directly) on the Euclidean plane and routes
greedily using these locations. The authors obtain experimental evidence showing that this approach makes
greedy routing more reliable. However no theoretical guarantees were obtained.

In a bid to place this approach on a more solid theoretical footing, Papadimitriouand Ratajczak [PR05]
investigated classes of graphs on which greedy routing (without having torely on variants likefacerouting)
could be guaranteed to work,i.e.,graphs which can be drawn in the plane withoutlakesor voids. They came
up with the following conjecture:

Let a distance decreasingpath in a drawing of a graph be a paths = v1, v1, v2, . . . , vk = t such that
‖vi − t‖ < ‖vi−1 − t‖, 2 ≤ i ≤ k where‖ . . . ‖ denotes the Euclidean distance.

Conjecture 1 ([PR05]) Any 3-connected planar graph can be drawn1 on the Euclidean plane such that
there exists a distance decreasing path between every pair of vertices ofthe graph.

Such a drawing is called aGreedy Drawing of the graph. It is easy to see that using the greedy drawing
of a graph (assuming such a drawing exists) as the virtual coordinates ofthe vertices guarantees that greedy
routing will always work.

1.1 Our Results

We settle Conjecture 1 in the affirmative for the case of planar triangulations and thus obtain the first non-
trivial class of graphs for which this class of greedy routing algorithms can be guaranteed to work.

1Note that the conjecture in [PR05] uses “embed” instead of “draw”. To be consistent with the Graph Drawing literature, we
use “draw”.
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We show in fact, that aplanar drawing of any given triangulation can be obtained,i.e.,one in which no
pair of edges cross.

The result is obtained by applying theKnaster-Kuratowski-MazurkiewiczTheorem, which is known to
be equivalent to theBrouwer Fixed Point Theorem. We believe that the technique used in obtaining the result
might be of independent interest and might prove helpful in showing the existence of plane drawings with
other properties.

Note that greedy drawings can be trivially seen to exist for many simple classes of graphs, like graphs
with Hamiltonian circuits, all4-connected planar graphs (since they have a Hamiltonian circuit by a theorem
of Tutte [Tut56])etc. It is not very difficult to show that theDelaunay triangulationof any set of points in
the plane is also greedy. But thus far no non-trivial class of graphs withthis property was known.

2 Preliminaries and Related Work

Given an-vertex graphG(V, E), a drawing of G is a mapping of the vertices ofG to points and of the
edges ofG to curve segments (with the images of the corresponding vertices as end points) in the plane. We
consider only those drawings in which the edges are mapped to straight line segments and so the drawing is
fully specified by the images of the vertices.

Recall that aplane graphis an abstract planar graph whose embedding has been fixed, using, say the
Hopcroft-Tarjan algorithm [HT74]. In the rest of the paper we assume that G is plane triangulation. We
consider onlyplanar drawingsof graphs,i.e., drawings in which no pair of edges cross, in this paper. So
any reference to a drawing of a graph must be taken to mean a planar straight-line drawing.

2.1 Drawing Planar Graphs In The Plane

An overview of graph drawing algorithms can be obtained from [TBET98,NR04]. We describe some well-
known algorithms for obtaining planar straight-line drawings of planar graphs:

1. Rubber Band Embedding[Tut60]: This algorithm has a elegant physical interpretation: Fix the po-
sitions of the vertices of some face of the graph and replace all other edges by springs (or “rubber
bands”). It can be shown that if the graph is 3-connected and planar then the equilibrium position of
the nodes gives a planar straight line drawing. Many interesting generalizations of this approach have
been obtained, see for instance [LLW88]. The drawback of this method is that the size of the grid
required for the drawing may be large (exponential in the number of vertices).

2. Canonical Ordering[dFPP88]: This result showed for the first time that a planar straight-line drawing
of a planar graph could be obtained on grid of polynomial (in factO(n) × O(n)) size. This approach
was used in [Kan92] to obtain drawings satisfying various bounds on the minimum angle, bends, grid
sizeetc.

3. Schnyder’s Realizers[Sch90]: The author describes an elegant algorithm for partitioning the edges of
a triangulation into three trees and obtaining a planar drawing (on aO(n) × O(n) grid) of the graph
based on this. Our result uses the techniques developed here and so thisapproach is described in detail
in Section 4. Also see, [Rot05, FPS05, Fel01].

On a related note, it was shown recently, [Kle06b], that any graph has agreedy drawing in theHyper-
bolic plane. But this might require an exponential sized grid,i.e., Ω(n) bits might be required to store the
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coordinates of a single vertex, [Kle06a]. This has been further explored in [May06]. In contrast, examples
of graphs with no greedy drawing in theEuclideanplane were obtained in [PR05].

3 Outline

We describe the approach of [Sch90] in Sections 4 and 5. The details of how the edges of a triangulation
can be partitioned into three trees is described in the former section and the latter section describes how
a drawing of the triangulation can be obtained from this partitioning and also describes some interesting
geometric properties of these drawings.

In Section 6, we investigate greedy paths in drawings and show that any drawing in which every face is
good, Definition 9, is greedy. In Section 7, we prove the main result of the paperthat there exists a greedy
drawing of the triangulation, by showing that there exists a drawing in which every face isgood.

In Section 8, we prove a technical result on the sum of weights of allbad faces of a drawing, which is
needed for proving the main result.

4 Schnyder Realizers of a Triangulation

We designate a (triangular) facef0 of G as theexterior face. All vertices (edges) not belonging tof0 are
called theinterior vertices (edges). Let the vertices off0 beP0, P1 andP2. We define the order(P0, P1, P2)
to be the “counter-clockwise” (CCW) order.

P
2

P1P0

P
2

P
0

P
1

Figure 1: A triangulation and its realizers. The leftmost figure contains all three trees together and the three
edges of the exterior face, which do not belong to any tree. The remainingfigures show each of the three
trees separately.

Theorem 1 ([Sch90]) Given a plane triangulationG(V, E), there exist three directededge-disjointtrees,
T0, T1 andT2, called therealizerof G, Figure 1, such that:

1. Ti is rooted atPi, i ∈ {0, 1, 2} and contains all vertices ofG exceptPi+1 andPi−1 (the indices are
mod 3).

2. All edges ofTi are directed towards the root and every edge ofG except those belonging to the exterior
face are contained in exactly oneTi.

3. Each interior vertex,v, has exactly3 outgoing edges, one for eachTi. The edge belonging toT0

is followed by the one belonging toT1 which is followed by the one inT2 in CCW order aroundv,
Figure 2a.

Note that there might be any number (including zero) of incoming edges of eachTi at any vertex.
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Figure 2: (a)The order of the edges belonging to different trees around an internal vertexv. There are exactly
three outgoing edges, one belonging to each tree. There can be any number (including0) of incoming edges.
(b) The paths inTi from v to Pi are vertex disjoint and divide the graph into three regions. (c) Obtaining
Realizers from the Canonical Order. Note thatm ≥ 2 sinceGk+1 must be biconnected. Ifm = 2 then the
edges shown directed towardsvk+1 will not exist.

Let v ∈ G be an interior vertex. Then, it follows from the above that there exist (directed) pathsPi(v)
from v to Pi in Ti, i = 0, 1, 2 called thecanonical pathsof v. From the fact theTi are edge-disjoint and the
order of the edges aroundv, it is clear thatPi(v) andPj(v) must be vertex disjoint (except forv itself which
appears on all three paths) ifi 6= j. Hence thePi(v), i = 0, 1, 2 divide the graphG into three “regions”,
R0(v), R1(v) andR2(v), as shown in Figure 2b.

4.1 Schnyder Realizers from Canonical Ordering

Letf0 = (P0, P1, P2) be the external face ofG. An ordering of the verticesv1 = P0, v2 = P1, . . . , vi, . . . , vn =
P2 is called aCanonical Ordering[dFPP88], if:

• The graphGk induced by verticesv1, v2, . . . , vk is biconnected and the boundary of its exterior face
is a cycleCk containing edgeP0P1.

• Vertexvk+1 lies in the exterior face ofGk and its neighbors form a subinterval (of length at least2)
of the pathCk − P0P1.

A simple way of using the canonical ordering to find the realizers ofG was obtained in [dFPP88]
and [Bre00]. We describe this below:

We process the vertices in the decreasing order of their rank in the canonical ordering. First, we add all
internal edges incident tovn(= P2) to treeT2 and orient them towardsvn. Let the neighbors ofvk+1 in Ck

bev′1, v
′
2, . . . , v

′
m. We add the edgevk+1v

′
1 to treeT0 and orient it towardsv′1. The edgevk+1v

′
m is added

to treeT1 and oriented towardsv′m. All other edges (if any) are added to treeT2 and oriented towardsvk+1,
Figure 2c.

5 Schnyder Drawings and Their Properties

Let each internal facefi be assigned a non-negative weightwi such that
∑2n−5

i=1 wi = 1. Let wRi(v) be the
sum of weights of all faces in regionRi(v), Figure 2b. We can obtain a drawing ofG in the following way:

Place vertexv at the point
(

wR0(v), wR1(v), wR2(v)

)

.
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Recall that we only deal with straight line drawings and so the drawing is specified by the positions of
the vertices. Since the total weight of all faces is1, every vertex ofG is placed on thex + y + z = 1
plane. Notice that the external verticesP0, P1 andP2 are always placed at the points(1, 0, 0), (0, 1, 0) and
(0, 0, 1) irrespective of how the weights of the internal faces are assigned and that these points determine an
equilateral triangle (on thex + y + z = 1 plane). Also notice that all internal vertices are placed inside this
equilateral triangle.

The drawing obtained by the above method is defined to be aSchnyder Drawingof G.
The set of solutions to the equation

∑2n−5
i=1 wi = 1 such that thewi are non-negative can be represented

by the unit simplexS in 2n− 6 dimensions, with2n− 5 vertices. Hence, for each pointp ∈ S, a Schnyder
drawing ofG can be obtained.

The following theorem, while a generalization of the result proved in [Sch90], follows directly from the
proofs given there.

Theorem 2 ( [Sch90]) In any Schnyder Drawing of a triangulationG, the edges are non-intersecting,i.e.,
the drawing is planar.

Definition 3 A non-degenerateSchnyder Drawing is defined to be one obtained by assigning strictly posi-
tive weights to the faces.

In the rest of the paper, we use the same notation for a vertexv of G and the point in the plane it is drawn
on. The ray

−−−→
P0P1 is defined to have a slope of0◦ and all angles are measured counter-clockwise from this

ray. So, the ray
−−−→
P0P2 has slope60◦,

−−−→
P2P1 has slope300◦ and so on. Recall that all drawings we consider

(and the pointsP0,P1 andP2) lie on thex + y + z = 1 plane.
The following is a key property of Schnyder drawings.

Lemma 4 (The Three Wedges Property [Sch90, Rot05])In every Schnyder drawing the three outgoing
edges at an internal vertexv have slopes that fall in the intervals[60◦, 120◦] (T2), [180◦, 240◦] (T0) and
[300◦, 360◦] (T1), with exactly one edge in each interval, as shown in Figure 3a.

Further, if the drawing is non-degenerate, no edge has slope which is a multiple of 60◦ and every edge
has positive length.

In the rest of the paper, we prove many propositions specifically for non-degenerate Schnyder Drawings.
Extending them to degenerate Schnyder Drawings would make the proof quite messy as degenerate drawings
might have zero length edges. Also, non-degenerate drawings are sufficient for our purpose. So we disregard
degenerate drawings.

Lemma 5 The incoming edges (if present) have slopes in the following rangesT0 : [0◦, 60◦], T1 : [120◦, 180◦]
andT2 : [240◦, 300◦], Figure 3b.

Proof: Let v′v be an edge directed fromv′ towardsv. Applying Lemma 4 atv′, the result follows.
Recall that any number (up to linear) of incoming edges might be present atany vertex.

Lemma 6 (The Enclosing Triangle Property [Sch90, Rot05]) 1. Given a vertexv and an outgoing
edge(v, w) belonging, without loss of generality (wlog), toT0, the equilateral triangle formed by
drawing lines with slopes of0◦, 60◦ and120◦, as shown in Figure 3c is free of any other vertices. A
similar result holds if(v, w) belongs toT1 or T2.

2. For any facef = (u, v, w) the triangle formed by drawing similar lines as shown in Figure 3d is also
free of other vertices. This triangle is called theenclosing triangleof f .

Proof: (1) follows from Lemma 4.(2) follows from (1) and the fact that the drawing is planar.

6



v
T
0

T

2T

1

v

T
2

1T
T
0

w

v

w
u

v

(a) (b) (c) (d)

Figure 3: (a) The shaded60◦ wedges contain exactly one outgoing edge each. The trees containing the
edges are marked. (b) All incoming edges (if present) fall in the shaded wedges. (c) The equilateral triangle
determined by lines throughv andw with slopes0◦, 60◦ and120◦ is free of other vertices. A similar result
holds if edgeuw were to belong toT1 or T2 (with the equilateral triangle changing appropriately) (d) The
enclosing triangle of a face.

6 Greedy Paths in Schnyder Drawings

A face of the triangulation is said to becyclic if its edges form a directed cycle and is said to beacyclic
otherwise. Any cyclic face of a graph can bestackedby adding a vertex adjacent to the three vertices of
the face and adding the new edges to each of the trees as shown in Figure 4a. This breaks the face into
three acyclic faces. After a greedy drawing has been found, the new vertex can be deleted without affecting
the greedy paths between the other vertices. Hence, we will assume from now on that every face in the
triangulation is acyclic.

Notice that any acyclic face must have a vertex (like vertext in face(u, t, v) in Figure 4a) with two
outgoing face edges which must belong to different trees. The face is said to belong to treeTi if these two
outgoing edges belong to treesTi−1 andTi+1.

u
v

t

w

u
v

x’

x
z

(a) (b)

Figure 4: (a) The cyclic face(u, v, w) is stackedby adding vertext and its incident edges. The edgetu is
added to the same tree aswu, edgetv the same tree asuv andtw the same tree asvw. (b) The triangle
(u, x, x′) is equilateral.‖v − z‖ < ‖u − z‖ irrespective of wherez lies in the shaded region and wherev

lies onxx′.

The following lemma will prove useful:

Lemma 7 Let u be some vertex anduv an edge incident to it. Consider a60◦-wedge atu containing the
edgeuv, as shown in Figure 4b and letz be any vertex in the shaded region. The triangle(u, x, x′) is
equilateral andv ∈ xx′ and assume thatz 6∈ xx′.

Then,‖v − z‖ < ‖u − z‖.

Proof: Let l be the perpendicular bisector ofuv. It is easy to see thatz 6∈ l and it lies on the same side ofl

asv. Hence, it follows that‖v − z‖ < ‖u − z‖.
To show that a drawing ofG is greedy, it clearly suffices to show the following:
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For every pair of (ordered) distinct verticesu, v ∈ V , there exists some neighbor ofu, sayu′

such that‖u − v‖ > ‖u′ − v‖.

In the rest of the paper we will show that a non-degenerate Schnyder drawing ofG exists which satisfies
the above property.
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Figure 5: (a) An acyclic face with its active region shaded. The thin lines have slopes that are multiples of
60◦. The active region atu is bounded by rays with slope180◦ and300◦. (b) Note thatv andv′ need not
be adjacent. (c) Verticesu0, u andu1 form a face. Edgeu0u1 could be directed either way. (d) Thegreedy
regionof facef = (u, v, w) is shown shaded.

Let f = (u, v, w) be an acyclic face as shown in Figure 5a. Let theactive regionof ∠uvw, denoted by
A∠uvw, be the wedge with sides of slopes180◦ and300◦ at vertexu. This is shown shaded in Figure 5a.

Lemma 8 Let f = (u, v, w) be an acyclic face ofG and in some non-degenerate Schnyder Drawing ofG,
let z be a vertex in the active region of∠uvw. Then,‖v − z‖ > min(‖u − z‖, ‖w − z‖).

Proof: Moved to the Appendix due to lack of space.
Let u andv be a pair of non-adjacent vertices. It follows thatv lies in one of three regionsR0(u),

R1(u) or R2(u) (or their boundaries), Figure 2b. Assume, wlog, thatv lies in regionR2(u), i.e., the region
bounded by the edgeP0P1 of the external face and the pathsPi(u), i = 0, 1 from u to P0 andP1, Figure 5b.
The pathP2(v) from v to P2 must intersect eitherP0(u) or P1(u). Assume wlog, that it intersectsP0(u)
and letv′ = P2(v) ∩ P0(u). Let u0 (u1) be the neighbor ofu onP0(u) (P1(u)).

The following possibilities arise:

Case I v′ = u: Let P2(v) = (v = v0, v1, v2, . . . , vk−1, vk = v′ = u, vk+1, . . . , P2). It follows from
Lemmas 7 and 5 that‖u − v‖ > ‖vk−1 − v‖ in every non-degenerate Schnyder Drawing ofG.

Case II u has one or more edges directed inwards lying between the edgesuu0 anduu1 in the embedding:
Let the edge followinguu0 (in CCW direction) beuu′, Figure 5b. It follows from Lemma 4 thatv
lies in the active region of∠u0uu′.

Hence from Lemma 8 it follows that either‖u0 − v‖ < ‖u − v‖ or ‖u′ − v‖ < ‖u − v‖ in every
non-degenerate Schnyder drawing.

Case III The verticesu,u0 andu1 form a (acyclic) face ofG, Figure 5c: In this case there might exist some
Schnyder drawings in which for every neighborui of u, ‖ui−v‖ > ‖u−v‖. But we will show below
that there must existsomenon-degenerate Schnyder drawing in which‖u0 − v‖ < ‖u − v‖.

Thegreedy regionof a facef = (u, v, w) is the region bounded by the edgevw and the pathsP0(v)
andP1(w) as shown in Figure 5d. Note that even though the greedy region dependson the drawing, the set
of vertices falling in this region is fixed by the realizer ofG.
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Definition 9 Letf = (u, v, w) be a triangular face with edgesuv anduw directed away fromu, Figure 5d,
and letǫ > 0 be some constant depending only on the number of vertices ofG, whose value will be fixed
later. Then, in a Schnyder Drawing ofG, f is said to begood if

I The length of every edge off is at least
√

ǫ.

II For every vertexz in the greedy region:

‖u − z‖2 − ‖v − z‖2 ≥ ǫ if P2(z) ∩ P0(u) 6= ∅
‖u − z‖2 − ‖w − z‖2 ≥ ǫ if P2(z) ∩ P1(u) 6= ∅

and is said to bebad otherwise.

Note that for very vertexz in the greedy region exactly one ofP2(z) ∩ P0(u) andP2(z) ∩ P1(u) is
non-empty.Clearly, a non-degenerate drawing in which every face is good, is greedy.

7 The Main Result

The following theorem will prove useful:

Theorem 10 (Knaster-Kuratowski-Mazurkiewicz [KKM29]) Let ad-simplex with vertices{v0, . . . , vd},
be covered byclosedsetsCi, i ∈ {0, . . . , d} such that the followingcoveringcondition holds:

For anyQ ⊆ {0, . . . , d} the face spanned by the vertices{vi|i ∈ Q} is covered by
⋃

i∈Q Ci.

Then,
⋂

i∈{0,...,d} Ci 6= ∅.

This theorem is known to be equivalent to the Brouwer Fixed Point Theorem.
The main result is the following:

Theorem 11 Given ann-vertex plane triangulationG, there exists a non-degenerate Schnyder drawing of
G which is greedy.

Proof: Recall that for each pointp ∈ S, the unit simplex with2n − 5 vertices (in2n − 6 dimensions), a
Schnyder Drawing ofG can be obtained.

We definegood setsGf1
, . . . , Gf2n−5

whereGfi
⊆ S ∀i, in the following way: Letw = (w1, w2, . . . , w2n−5) ∈

S. Thenw ∈ Gfi
iff in the Schnyder drawing ofG corresponding tow, the facefi is good. Note that the

definition of these good sets depends on the value ofǫ (Definition 9).
In Section 8.1, it is shown that in any Schnyder drawing ofG the sum of the weights of all the bad faces

is always strictly less than1, if ǫ is small enough (Theorem 14). Letp = (p0, . . . , p2n−5) ∈ S lie in the
interior of somek-face ofS. Wlog, we can assume thatp0, p1, . . . , pk > 0 andpk+1 = . . . = p2n−5 = 0.
Since the sum of weights of bad faces is always less than1, it follows that some facefi wherei ∈ [0, k]
must be good in the drawing corresponding to pointp. Hencep ∈ Gfi

and so the KKM covering condition
is satisfied.

It is easy to see that the setsGfi
are closed. The condition that the length of the edges offi are at least√

ǫ can be expressed in the formP ≥ ǫ whereP is a quadratic polynomial, equation 1. It is not very difficult
to see that Condition II in Definition 9 can also be expressed as a polynomial (in fact quadratic) inequality.
Hence, the setGfi

can be expressed as the set of all points satisfying some weak polynomial inequalities.
HenceGfi

is closed.
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From this it follows that theGfi
satisfy the conditions of Theorem 10.

Hence,
⋂

i∈{1,...,2n−5} Gfi
6= ∅. Let g ∈ ⋂

i∈{1,...,2n−5} Gfi
. It follows that every face is good in the

Schnyder drawing corresponding tog, which implies that this drawing is greedy.
It is possible that the drawing corresponding tog is degenerate. But sinceǫ > 0 and the drawing varies

continuously with the set of face weights, we can always pick another point g′ close enough tog such that
the drawing corresponding tog′ is non-degenerate and greedy.

8 Schnyder Drawings and the Weights of Faces

a

b

c

de

u

v
x

y

f w
w’

0
P P

1

P
2

Figure 6: The sum of weights of faces in different regions are denotedby a, b, c, d, e andf . Note thatw
andw′ could possibly be the same vertex, depending on how the edgewv is directed. The analysis below
remains the same in either case.

In this section we show that sum of weights of the bad faces in a drawing of the triangulation is always
strictly less than1 for ǫ small enough.

Consider the faceF = (u, v, w) in Figure 6. The sum of weights of faces in various regions are marked.
All paths shown in the figure are canonical paths (Pi(·)) starting from some vertex. Note thatb is the weight
of the region demarcated byuvw′w wherew andw′ could possibly be the same vertex.

The coordinates of the the points the vertices are mapped to are given below. Recall that the graph is
being drawn on thex+y+z = 1 plane, so the points lie on this plane. The vectors corresponding to various
edges are also given below. Note thatu0 represents the first coordinate of vertexu, x1 represents the second
coordinate of vertexx and similar is the case withy2.

u = (u0, x1 + a + f, y2 + b + c + d + e)
v = (u0 + a + b, x1 + f, y2 + c + d + e)
y = (u0 + a + b + c + d + f, x1 + e, y2)

−−−→
u − y = (−a − b − c − d − f, a + f − e, b + c + d + e)−−−→
v − y = (−c − d − f, f − e, c + d + e)−−−→
u − v = (−a − b, a, b)

It follows that the length of the edgeuv is given by:

‖u − v‖2 = 2(a2 + b2 + ab) (1)
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Lemma 12 LetWuvw be the weight of face(u, v, w). If Wuvw ≥
√

ǫ
2 , every edge of faceF has length at

least
√

ǫ.

Proof:

‖u − v‖2 = 2(a2 + b2 + ab) ≥ 2W2
uvw ≥ ǫ (2)

An identical argument applies to edgeuw. For edgevw, notice that from Lemma 4,∠vuw ≥ 60◦.
Hence the edgevw is longer than at least one of the other two edges.

Note thatb ≥ Wuvw sinceb is the weight of all faces in regionuvw′w.

Theorem 13 Assuming thatb ≥
√

ǫ
2 , the following conditions are necessary (but not sufficient) for‖u −

y‖2 − ‖v − y‖2 < ǫ.

a > b (3)

e > b (4)

a <
√

a − b and b <
√

a − b (5)

Proof: Moved to Appendix due to lack of space.

8.1 The Maximum Weight of Bad Faces

Let point w = (w1, . . . , w2n−5) ∈ S be such that in the Schnyder drawing, every facefi with weight
wi > 0 is bad. Then, the faces can be divided into three types:

Type A : The face has weight0 and can be either good or bad.

Type B : The face has weight strictly less than
√

ǫ
2 and is bad because either one of its edges is shorter thanǫ

(and so violating Condition I in Definition 9) or because it violates Condition II inDefinition 9.

Type C : The face has weight at least
√

ǫ
2 and is bad because it violates Condition II in Definition 9.

If ǫ is small enough, then “most” of the weight must be present in faces of TypeC.

Theorem 14 In any Schnyder drawing ofG, the sum of weights of all faces of typeB andC is strictly less
than1.

Proof: The proof has been moved to the Appendix due to lack of space. We give an outline below:
We try to find a point inS such that, in the Schnyder drawing corresponding to it, every face with

positive weight is bad. But we run into a contradiction, thus showing that such a point cannot exist.
Let v1, v2, v3, . . . vn be the canonical order ofG wherev1 andv2 are the vertices of the bottom edge of

the external face andvn is the topmost node. We start with the edgev1v2 and construct the triangulation by
adding vertices one by one according to the canonical order. This also gives us an ordering on the faces. As
faces are added, we try to assign weights to them in such a way that no facewith positive weight is good.
This condition places an upper bound on the weight each face can be assigned. Once we are done with
all faces, we show that the sum of weight of all faces (good or bad) is forced to be less than1, which is a
contradiction.

11



9 Conclusions

We have been able to show that every triangulation has a planar greedy drawing in the Euclidean plane. As
for algorithmic questions, the following iterative approach works quite well inpractice:

• LetW i = (w0, w1, . . . , w2n−5) ∈ S be the weights of the faces in iterationi.

• Let W i+1 = 1
W

(

w′
0, w

′
1, . . . , w

′
2n−5

)

wherew′
j = wj if fj is good in the drawing corresponding to

W i andw′
j = 2wj otherwise andW is the normalizing factor such thatW i+1 ∈ S.

• For i = 0, let w0 = w1 = . . . = w2n−5 = 1
2n−5 .

This algorithm converges quite fast, but so far no theoretical bounds are known. We are confident that
good bounds can be obtained.
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11 Appendix

The following Lemma is not used directly in the paper but is helpful because itprovides some intuition as
to why the Schnyder drawing framework can lead to greedy drawings of graphs.

Lemma 15 Given any two verticesu, v ∈ G, then inany non-degenerate Schnyder drawing ofG, there
exists a neighbor ofu, sayu′ and a neighbor ofv, sayv′ such that‖u − v‖ > min(‖u′ − v‖, ‖u − v′‖).

Proof: Follows from Lemmas 4 and 7.

11.1 Proof of Lemma 8

Proof: From Lemma 4, it follows thatu lies below the horizontal line (denoted byl in Figure 5a) through
w.

Sincez lies in the active region of vertexu, only two possibilities can arise:

• z lies in the wedge bounded by rays of slope180◦ and240◦ at vertexv (the wedgex1vx2 in Figure 5a):
From Lemma 7, it follows that‖v − z‖ > ‖u − z‖.

• z lies in the wedge bounded by rays of slope240◦ and300◦ at vertexv (the wedgex2vx3 in Figure 5a):
It follows thatz must lie below the horizontal line throughw sinceu and so the whole active region
lies below this line.

Now applying Lemma 7 again it follows that‖v − z‖ > ‖w − z‖.

Hence, in every case‖v − z‖ > min(‖u − z‖, ‖w − z‖).

11.2 Proof of Theorem 13

Proof:

‖u − y‖2 − ‖v − y‖2 < ǫ,

=⇒ a(a + b + c + d + 2f − e) + b(b + 2c + 2d + f + e) <
ǫ

2
. (6)

Sinceb ≥
√

ǫ
2 and all variables are non-negative, we must have:

a + b + c + d + 2f − e < 0,

=⇒ b < e.

14



Rearranging the terms of equation 6, we obtain:

a(a + b + c + d + 2f) + b(b + 2c + 2d + f) + e(b − a) <
ǫ

2
,

=⇒ b − a < 0 =⇒ a > b.

for the same reason as before.
Rearranging the terms of equation 6 again we obtain:

a(a + b + c + d + 2f) + b(b + 2c + 2d + f) + e(b − a) <
ǫ

2
,

=⇒ a2 + e(b − a) < 0,

=⇒ a2 < e(a − b),

=⇒ a <
√

a − b (sincee < 1).

12 Proof of Theorem 14
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Figure 7: (a) The first faced added. Note that the vertexP2 and the edgesP2P0 andP2P1 have not yet been
added to the graph and are shown only for clarity.(b) and (c) Faces obtained when the vertexvk+1 is added
to Gk. Note that the path fromvk+1 to P2 is not present inGk and is shown only for clarity.(d) Note that
only facefl = (vk+1, tl, tl−1) is shown to avoid clutter. (e) Only facef ′

l = (vk+1, tl′ , tl′−1) is shown for the
same reason. Note thatfl′ lies to theright of fl.
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Proof: Proof by contradiction. We try to find an assignment of weights to the faces such that every face
with positive weight is bad and show that this would require the sum of weightsof all faces to be less than
1, which is impossible.

Let v1, v2, v3, . . . vn be the canonical order ofG wherev1 andv2 are the edges of the bottom edge of the
external face andvn is the topmost node.

We start with the edgev1v2 and build the graph by adding vertices one by one according to the canonical
order. The vertexv3 and the face,f1, it forms withv1 andv2 are shown in Figure 7a. Since the greedy region
of v3 contains no vertices, it is clear thatf1 cannot be a type C face. Hencewf1

<
√

ǫ
2 .

Let Gk be the graph induced by the verticesv1, v2, . . . , vk and let weight of all faces ofGk be Wk.
Assume thatWk → 0 asǫ → 0. This is clearly satisfied byW3 = wf1

<
√

ǫ
2 . Let W = max

(

Wk,
√

ǫ
2

)

.
We will show thatWk+1 also satisfies this property.

We now addvk+1 to Gk and try to assign weights to the new faces formed. LetWnew be the maximum
weight that can be assigned to the new faces while ensuring that every face with positive weight is bad. We
have the two following possibilities:

Case I : vk+1 has only two neighbors inGk. Let them be verticesu andw as shown in Figure 7b. In this
case, the only new face is(u, vk+1, w) which belongs to tree2. Then it follows from equation 4 that
Wnew < W , as otherwise the face is good.

Case II : vk+1 has more than two neighbors, sayu, t1, . . . , tm andw as shown in Figure 7c. The new faces
aref1 = (u, t1, vk+1) which belongs to tree1, fm = (vk+1, tm, w) which belongs to tree0 andm−1
faces of the formfi = (ti, vk+1, ti+1) each of which may belong to either tree0 or 1. Let wfi

be the
weight of facefi.

Case i : None of the new faces have weight more thanW . Hence,Wnew < nW asm + 1 < n.

Case ii :At least one face, say belonging to tree1, has weight more thanW , Figure 7d.
Let l ∈ [1..m] be the maximum value such that: (a)wfl

> W and (b)fl belongs to tree1. Let
l′ ∈ [l + 1..m] be the minimum value such that:(a)wf

l′
> W and (b)fl′ belongs to tree0.

Of course such anl′ need not exist. If it does not, then, in Figure 7d every face in the regionh

has weight at mostW . By equation 3 applied2 to facefl, g < h if fl is to be bad. Every new
face must fall in one of the regionsg or h. Sinceh < nW , we haveWnew < g + h < 2nW

(sincem + 1 < n).
If l′ does exist, then by equation 3, applied to facefl′ , g′ > h′ in Figure 7e. Note that is possible
to havel = 1 and/orl′ = m.
Let S(g), S(g′), S(h) andS(h′) denote the set of faces in the regions so marked in Figure 7d
and 7e. Sincefl′ lies to the right offl, it is clear thatS(g) ⊂ S(g′) andS(h′) ⊂ S(h) and by
equation 3 applied to facesfl andfl′ , h > g andg′ > h′.
Let Dgg′ = S(g′)\S(g) andDhh′ = S(h)\S(h′) andWgg′ (Whh′) be the weight of the faces in
Dgg′ (Dhh′). We have:

g + Wgg′ = g′ andh′ + Whh′ = h

=⇒ Wgg′ + Whh′ > g′ − h′ sinceh > g

and Wgg′ + Whh′ > h − g sinceg′ > h′

2Note that the face shown in Figure 6 in the derivation of equation 3 belongs totree2 while facefl andf ′

l belong to trees0 and
1. Of course this does not really change anything as the same argument applies. To see how equation 3 (or equation 5) applies to
facefl, compare Figures 6 and 7d where verticesvk+1, tl, tl−1 map tov, u, w in that order.
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The only new faces in the setsDgg′ andDhh′ arefi, i ∈ [l + 1, l′ − 1]. Each of these faces have
weight at mostW (by definition ofl andl′). Since the sum of all the old faces is at mostW , we
have:Wgg′ + Whh′ < 2(W + nW ) = 2(n + 1)W .

From equation 5 applied to facesfl andfl′ , it follows thatg, g′, h, h′ <
√

2(n + 1)W .

HenceWnew < max(2nW, c
√

nW ) wherec is some small constant. SinceW → 0 as ǫ → 0,
we can assume thatǫ is small enough that2nW < 1 and soWnew < c

√
nW . Recall thatW =

max
(

Wk,
√

ǫ
2

)

. It follows thatWk+1 = Wk + Wnew < W + c
√

nW < c′
√

nW . HenceWk+1 <

c′
√

n max(Wk,
√

ǫ
2). Notice thatWk+1 → 0 asǫ → 0.

Hence it easy to see that by pickingǫ small enough, we can makeWn < 1 (in fact, we can make
Wn → 0). But the total weight of all faces must be exactly1 and so this gives us a contradiction and
the result follows.
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