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Abstract. In this paper, we present algorithms to produce orthogonal draw-
ings of arbitrary graphs. As opposed to most known algorithms, we do not restrict
ourselves to graphs with maximum degree 4. The best previous result gave an
(m —1) x (5 + 1)-grid for graphs with n nodes and m edges.

We present algorithms for two scenarios. In the static scenario, the graph is
given completely in advance. We produce a drawing on a grid of size at most
mT*'” X m‘;” , or on a larger grid where the aspect ratio of the nodes is bounded.
Furthermore, we give upper and lower bounds for drawings of the complete graph
K, in the underlying model. In the incremental scenario, the graph is given one
node at a time, and the placement of previous nodes can not be changed for
later nodes. We then come close to the bounds achieved in the static case and
get at most an (2 + n) X (2m + n)-grid. In both algorithms, every edge gets at
most one bend, thus, the total number of bends is at most m.

Then we focus on planar graphs and outer-planar graphs. We obtain planar
drawings in an (m—n-+1) x min{%, m—n+1}-grid with m —n bends for planar
triconnected graphs. The best previous result here was an m X m-grid and m
bends, if the boxes of the nodes are constrained to be small.

All algorithms work in linear time.

1 Background

In recent years, the subject of graph drawings has created intense interest, due to
numerous applications. Different drawing styles have been investigated (see [3]
for an overview). One possible drawing technique is to produce orthogonal graph
drawings, where only horizontal and vertical lines are employed. For example, in
networking and data base applications, graph drawings serve as a tool to help
display large diagrams efficiently. Specific uses of orthogonal graph drawings
include Data Flow Diagrams and Entity Relationship Diagrams. The goal is to
obtain an aesthetically pleasing drawing, and common objectives are small area,
few bends, and few crossings.

* The research was partly funded by the NIST Advanced Technology Program Award
No. 7T0NANB5H1162” and by the German Research Society, Grant DFG Ka/4-2.



For graphs with maximum degree 4, the usual definition of an orthogonal
drawing is an embedding in the plane with nodes drawn as points, and edges
drawn as sequences of horizontal and vertical line segments. For graphs with
higher maximum degree, it is not possible to drawn the nodes as points, since
no overlap among edges is allowed. Several attempts to generalize the known
results for graphs with maximal degree 4 have been made. In Giotto [15], the
high-degree nodes are split into several ‘small’ nodes and the previous techniques
could be applied. Unfortunately, no theoretical bounds have been achieved and
even worse, the final boxes of the nodes might be stretched unrelated to the
degree.

In this paper, we forbid that nodes may be stretched far, which can be de-
scribed in one sentence as “the nodes are not bigger than they need to be in
order to accommodate all incident edges”, see also [1]. For our presentation, we
use the simpler constraint that the half-perimeter of the box of each node is at
most deg(v). In the same paper, a generic scheme was presented how to create
orthogonal drawings of graphs by placing first nodes, then bends, and then ports.
We will describe our algorithms using this scheme to simplify our presentation.

Most of our drawings will be in the so-called Kandinsky-model introduced by
Fofimeier and Kaufmann [7]. In such a drawing, there are two different types of
grid-lines. The grid-lines of a coarse grid are used to place the nodes. The grid-
lines of a finer grid are added to allow more than one edge to attach on each side
of a node. A set of neighboring fine grid-lines, called a slot, is assigned to each
coarse grid-line. Any two slots are disjoint. Additionally, the Kandinsky-model
imposes the bend-or-end property. If e is an edge attaching at the top of v, and
if w is another node placed in the same column as v, and above v, then either
e must have the other endpoint w, or e must be drawn with a bend below the
lowest row of w. The same holds for the other directions analogously.

Fofimeier and Kaufmann presented an algorithm that computes an orthog-
onal drawing in the Kandinsky-model with the minimum number of bends [7].
However, this algorithm works only for planar graphs, the nodes all have the
same sizes and the running time is @(n? logn). The required area has not been
analyzed. In a subsequent paper, Fofimeier, Kant and Kaufmann gave a linear-
time heuristic to achieve, in the same model, an m x m-grid and one bend per
edge for planar triconnected graphs [6]. Another recent result by Papakostas and
Tollis draws biconnected graphs with width m —1 and height 7 + 2 using a less
restrictive model [13].

We develop a new algorithm, which yields an mT-I—n X mT‘*'”—grid, and one bend

per edge, and improves on the previous algorithms in various ways. It works
for any simple graph, without demands on the connectivity. It takes only linear
time. It improves the grid-size, apart from differences in the chosen model, by
a factor of close to 2, under the reasonable assumption that m is significantly
lar%e)r than n. Furthermore, the size of the box of each node v is bounded by
deg(v

—5— . However, the aspect ratio of each node can be unbounded, since the box

of the node may appear to have size 1 x %ﬂ. A variation of our algorithm



achieves an aspect ratio of at most 1:2 for each node, while the grid-size is at
most (3m + %) x (3m + 2).

To explore the Kandinsky-model more thoroughly, we study the special case
of the complete graph. We give a construction in a grid of width and height

T+ %n with m — 2 bends. Furthermore, we show that any drawing of the
complete graph in this model must have m — n bends, thus we are close to
optimality.

In incremental scenarios the graph is given one node at a time, and the next
node has to be inserted into a fixed previous drawing. This incremental scenario
is a first important step towards full interactive scheme and has been considered
for 4-graphs in [12]. The critical point for the interactivity is that insertion of new
nodes should not change the previous drawing, or at least we can modify it only
in a very restricted way. In [15] as well as in [1] interactive schemes have been
presented. The second paper yields an (m+n) x (m + n)-grid and m bends. We
modify our static algorithm and get area bounds which are only about a factor
of 4/3 away from our results for the static scenario.

In the third part of the paper, we consider static algorithms for drawing
planar graphs. For triconnected planar graphs we produce drawings in a grid of
size of at most (m —n + 1) x min{%, m —n + 1}, where the number of bends is
m — n. The height and width of each box is at most deg(v), which distinguishes
these drawings from k-visibility representations (e.g. in [16]), where we have less
bends and a smaller area, but in exchange the nodes are bigger.

2 The static scenario

Assume that the full graph G is given in advance. We present one generic al-
gorithm, which works for any node order and edge orientation. Using special
implementations, we obtain two different results on high-degree drawings.

2.1 A generic algorithm

Assume some arbitrary node order {vy,...,v,} and some arbitrary edge orien-
tation of G is given. An edge directed from v; to v; is called good if i < j and
bad otherwise. A predecessor (successor) of v; is a neighbor v; where the edge
(vi,v;) is incoming (outgoing) at vj. A predecessor is good if the according edge
is good. We denote the number of incoming edges of v; as indeg(v;), and the
number of good and bad incoming edges of v; as indeg?°°*(v;), and indeg®®®(v;),
respectively. Similarly we define outdeg(v), outdeggOOd(v) and outdegbad(v).

We create the drawing by first computing the coarse grid-lines for the nodes,
this corresponds to the “node placement” phase introduced in [1]. We assign
one row for each node, and one column for each node. No two nodes will be
placed in the same row or the same column. These rows and columns will later
be expanded into horizontal and vertical slots.

We compute rows for the nodes by processing them in forward order. Consider
v;, ¢ = 1 to n. If it has no good predecessor, then we create a new row at an



arbitrary place. Otherwise, we add a row close to the median of the rows of the
good predecessors. Precisely, let r1,..., r; be the rows of the good predecessors
of v;. If s 1s odd, add a row before or after r.4: . If s 1s even, add a row somewhere
between s and Teyl Place v; 1n this row. ’

We compute a column for each node similarly, but this time in backward
order. For v;, i = n down to 1, place v; in a new column. This new column is
created near the median of the columns of the good successors of v;, if v; has
good successors, and at an arbitrary place otherwise.
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Fig. 1. An example of the node placement.

Next, we assign an approximate place for each bend, which corresponds to
the “edge routing” phase in [1]. If e = (v;, v;) is an edge directed from v; to v;,
then we place a temporary bend in the row of v; and the column of v;. This
edge routing does not yield a feasible drawing, but it gives a first sketch, enough
to analyze the drawing. For each node v, let b(v) be the number of edges that
attach at the bottom of v. Similarly, define {(v), r(v) and ¢(v) as the number of
incident edges at the left, right, and top side of v.

Lemma 1. For each node, |outdeg(v)/2] < r(v),l(v) < [outdeg?®®(v)/2] +
outdeg”®(v), and |indeg(v)/2] < t(v), b(v) < [indeg?°°¢(v)/2] + indeg”**(v).

Proof. Consider b(v). By the bend-placement, any bend at the bottom of v
belongs to an incoming edge of v. By the node placement, at most half (rounded
up) and at least half (rounded down) of the good predecessors are below v. The
bad predecessors can be, but need not be, below v. The result follows for b(v),
and 1s similar for the other three sides.

As described in [1], we can get a feasible drawing from this sketch easily.
Consider a row r. In this row, there is one node v, and some number of bends. We
add maz{r(v),l(v), 1} =1 rows above the row of v. Then, we distribute the bends
among these rows such that no two edges on one side cross, as demonstrated in
Fig. 2.

This algorithm can be implementing in O(m+n) time, using the data struc-
ture by Dietz and Sleator [4], the linear-time median-finding algorithm and
bucket sort (see for example [2]).
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Fig. 2. We assign edges to newly added rows and columns in such a way that there are
no crossings between edges from the same side.
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Fig. 3. Continuing the example of Fig. 1, we show the edge routing and how the edges
are distributed in the final drawing.

2.2 A small grid-size

In this section, we show how to achieve a small grid-size by choosing a special
node order and orientation.

Definition 2. A node order together with an edge orientation is called polar-
free almost-acyclic, if indeg(v) > 1 and outdeg(v) > 1 for all v € V. Furthermore,
(a) indeg®**(v) < 1, if indeggo‘)d(va) > 0 then indeg®*(v) = 0, and
(b) outdeg®®*(v) < 1, if outdeg?°°*(v) > 0 then outdeg®®®(v) = 0.

Lemma 3. Let G be a simple graph without nodes with degree < 1. Then G has
a polar-free almost-acyclic order and orientation. It can be found in O(m) time.

Proof (Sketch). 1f G is biconnected, compute an st-order [11] of it, such that the
nodes v1 and v, are adjacent. Direct the edges according to it, and reverse edge
(v1,vyn). This can be done in O(m) time [5].

If G is not biconnected, compute an st-order for every biconnected component
B of GG. If B contains at least two cut-nodes, choose two cut-nodes as first and
last node. Otherwise, choose two adjacent nodes in B that are not cut-nodes,
and reverse the edge between them. Merge all these orderings such that the order
in each component stays unchanged.

Applying the generic algorithm with a polar-free almost-acyclic order and
orientation leads to good worst-case bounds on the grid-size.



Theorem 4. Let G be a simple graph without nodes of degree < 1. Then G has

an orthogonal drawing in an mT'M x 22 _grid with one bend per edge. The box

size of each node v is at most %ﬂ X %ﬂ‘ It can be found in O(m) time.

Proof. We will only prove the claim on the height, the claim on the width is
similar. After the node placement, we had n rows. For each node v, we add
maz{r(v),l(v),1} — 1 rows. Thus, the height is > oy maz{l,r(v),{(v)}. By
Lemma 1 and the conditions of the polar-free almost-acyclic ordering, we have
r(v),l(v) < [%ﬂ]. Furthermore, since outdeg(v) > 1 for all nodes, we

also have 1 < [%eg(v)]. Therefore, the height is at most Zvev[ioum;g(v) <

1<
Y vev Omdeg(U)H = 242 The height of the box of node v is maz {1, r(v),{(v)} <
|'outd2eg(v)-| < |'deg(;/)—1-| < deg2(v)

, since indeg(v) > 1.

A remark here on the condition of “no nodes of degree < 1”. Such nodes
should be pre-processed and removed from the graph. They can later be re-
inserted, by adding only one grid-line and no bend per node. We skip the details
here, and only mention that we can achieve a width and height of [mT—I—n] for the
fideg(;})-l'l] for each node.

grid and

2.3 Nodes with bounded aspect ratio

In the previous algorithm, the aspect ratio of a node may be unbounded, since
the box of node v may appear as a 1 x deg(v)/2 box. In this section, we add the re-
quirement to the model that the nodes should have a bounded aspect ratio. This
can be ensured by an orientation via eulerian circuits. Therefore, we make the
graph first eulerian by adding new edges between pairs of nodes with odd degree.
Then we compute the eulerian circuits which determine the orientation of the
edges. For the resulting orientation, we have indeg(v), outdeg(v) < [deg(v)/2].

Now we want a node order {v1,...,v,} that minimizes the number of bad
edges. This problem is NP-complete, since it is the feedback arc problem [8§].
But we can always find a node order such that there are at most m/2 bad edges.

Applying the generic algorithm with this node order and edge orientation,
we obtain good bounds on the aspect ratio of each node. Precisely, one can see
from Lemma 1 that the height of v is at most indeg(v) < outdeg(v) + 1, and the
width is at least (outdeg(v) + 1)/2, therefore the aspect ratio of v is at most 1:2.

The area of the resulting drawing is determined by the bad edges. If mg, and
my 1s the number of good and bad edges, respectively, then the width of the grid
is at most 52 + 2 +my < 3m + 2.

Theorem 5. Let G be a simple graph without nodes of degree < 1. Then G has
an orthogonal drawing in an (%m +5) x (%m + 2)-grid with one bend per edge
where each node has aspect ratio at most 1:2. It can be found in O(m) time.

We expect that with a suitable choice of a heuristic to determine the node
order, the expected area of the drawing can be improved tremendously.



3 The complete graph in the Kandinsky-model

In this section, we study the behavior of the Kandinsky-model for graphs with
many edges. We derive upper and lower bounds for the drawing of K, , the
complete graph with n nodes.

Theorem 6. If n s divisible by 8, then K,, can be embedded in the Kandinsky-
model in a grid of width and height 7 + %n with m — 5 bends.

Proof. We divide the nodes into four groups of equal size. Enumerate the nodes
in each group as {vgl), R vfll/)ll}. We place the nodes “as a diamond,” i.e.,on a
coarse 5 x 5-grid such that node v}(j) is placed in the ith quadrant and such that
the absolute value of the coordinates is (k, § 4+ 1 — k).

For each 1 < k < 7%, we define the k-square to be the four nodes vl(j),
¢t = 1,...4. These nodes induce a K4 with 6 edges. Four of these edges are
drawn straight, the other two edges are drawn with two bends each. We use two
columns for these bends if k¥ < 5, and two rows otherwise.

Forany 1 <i< %, any j>i,and k=1,...,4, we define the kth i, j-cross as
the group of nodes {vl(k),vj(»k), Ul(k_l), v](»k—l_l)}, where all additions are modulo 4.
In an 7, j-cross there are four edges that were not in a k-square. We draw these
four edges with one bend each, using two rows and two columns. This is possible
since by j > i the ith vertical and the jth horizontal coarse grid-line cross inside

the diamond. See also Fig. 4.
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Fig.4. The construction in the Kandinsky-model. We show the 1-square (dashed), and
the third 2,3-cross (solid), and the completed drawing of K.




We have 42?:/;1 i(F—i—1) = % — % many crosses, each accounts for 4
edges and 4 bends and uses two rows and columns. We have 7 squares, each
accounts for 6 edges and 4 bends. Half of the squares use 4 columns and 5 rows,
the other half uses 5 columns and 4 rows. Since 4(”53—2 —-5)+6% = ”2—2 -2 =m,
all edges are either in a square or in a cross. Thus, the total number of bends is

A% —2) 442 = m — 2 The width and height each is 2(% — 2) 442 4 52 =

2
n®  n_m,3
Tts=73 t5n

Variants of this technique lead to other drawings in other models. If we drop
the bend-or-end property, but still keep the dimensions of the nodes limited,
then we can improve the bounds to a grid of width and height 7+ + % — 1 with
m — 2n + 2 bends. If we also drop the constraint on the size of the nodes but
let them grow arbitrarily (similar as in 2-visibility representations), we can even
prove that the grid has width and height % — %n + 3 with m — 6n + 20 bends.
This 1s optimal in the number of bends, since any orthogonal drawing has at
most 6n — 20 edges drawn as straight lines [9].

Now we prove a lower bound on the number of bends.

Theorem 7. Any drawing of the K,, in the Kandinsky-model has at least m —n
bends.

Proof. Assume we have a drawing I" of K,,. Let A be the number of vertical slots
that contain nodes. Let B be the number of horizontal slots that contain nodes.
The number of nodes in the ith vertical slot is denoted a;, while the number of
nodes in the jth vertical slot is denoted b;, so Zle a; = Zle b; = n.

The edges split into three groups. F, are the edges where the two endpoints
are in the same vertical slot, Ep are the edges where the endpoints are in the
same horizontal slot. We have E,NE}, = 0, by property of the Kandinsky-model.
E. are the remaining edges.

We have |E,| = 2?21 (%). Of these edges, Zle(ai—l) can be drawn without
bends. On the other hand, all remaining edges in £, must have at least two
bends by the bend-or-end property. Therefore, the number of bends in F, is at
least 22?:1[(‘12’) — (a; — 1)]. Similarly, the number of bends in Ej is at least
25550(5) = (b = ).

Every edge in E. has at least one bend. So the total number of bends is

n 255 6) 2 [6) o] [0 -0

i=

A B
=m+ Y al/2+ ) b}/2—5n+24+2B.
i=1 i=1
Given fixed values of A, B, the minimum of this expression is achieved if all
a;’s, respectively all b;’s, are the same; so a; = % and b; = 7. The number
of bends then is m + n?/2A + n?/2B — 5n + 2A + 2B. Minimizing this for
A and B, we arrive at A, B = 7, therefore the number of bends is at least
m+2n—5n+2n =m—n.



4 Incremental drawing of graphs with high degrees

We now study the incremental scenario where the nodes are given one by one,
but we have to fix one placement of a node before the next is given. An insertion
of a new row or column is allowed only at those positions where such an operation
does not stretch any node box unnecessarily large. We naturally generalize the
relative-coordinates scenario introduced in [12].

Assume the order of the nodes given is {v1, ..., v, }. Since the static algorithm
also worked with a node order, it is an obvious idea to try to use the same
algorithm with the user-defined node order and the induced edge orientation.
Two main differences occur: We have no information about the node order,
and in particular it is possible that the in-degree or out-degree of a node is 0.
Secondly, we have no information about the successors of node v; when placing
v;, and therefore have to find a different column-choice strategy.

We need to maintain a valid drawing, i.e.,a drawing where nodes are boxes
and no two edges overlap. Thus, we will represent the nodes as boxes throughout
the algorithm and keep the invariant that for any two boxes, the z-intervals of
the boxes as well as the y-intervals are disjoint.

So assume nodes vy, ..., v;_1 are drawn in this way. Compute all predecessors
of node v;, and find their median as in the static scenario. Add a new row at this
median place, such that it does not intersect any existing node (this is possible
since the y-intervals are disjoint).

Add w; = maz{l, [%ﬁl]} new columns for v;, and add these either at
the extreme left or at the extreme right. Clearly, in a practical implementation,
one would allow to place a new node at any new column in the middle of the
drawing, but here we analyze only the situation where placements to the right
or left hand side of the drawing is allowed. Thus, these columns do not intersect
any existing node. v; will be drawn as w; x 1-box in the beginning, and will
increase in height later, when we add more outgoing edges.

To route an edge (u, v;), we may have space left at the correct side of u, or we
may have to increase the height of u to make space for the edge. We can increase
u by adding a new row, this will not intersect any other node. We make sure
that this new row is between the upward-bending and the downward-bending
edges on either side. The edge (u,v;) will leave u on the right or left (depending
on where we placed v;), and enter v; at the top or bottom side of the box of v;.
It bends exactly once.

Let ny be the number of nodes with in-degree 0. Since for each node v; the
width of the box is maz{l, [%]}, the total width now is ny; + (m + n —
ng)/2=(m+n+n;)/2< T +n.

Since we choose a column without knowledge about the successors, any num-
ber of outgoing edges may attach on the right side or on the left side of the box.
Thus, we can estimate the height of node v; only by h; = maz {1, outdeg(v;)}.
So if n; is the number of nodes with out-degree 0, then the total height may be
as much as n; + m.

We reduce this bound by choosing the column for v; wisely. At a fixed time,
if a node v has r(v) incident edges on the right side and /(v) edges on its left side,
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Fig. 5. v; is inserted at the extreme left or right end, and at the median of the rows of
its predecessor.

and if r(v) > [(v) then we say [(v) edges on each side are mated, and r(v) —{(v)
edges are (right) free. Obviously, the height of v is r(v). We call v right-weighted
since r(v) > I(v).

If f is the number of left or right free edges at the end, then m — f is the
number of mated edges. The total height of the drawing is n; plus half of the
mated edges plus the number of free edges, which amounts to n; + m;f +f=

ne + 5 + % So we want to minimize the number of free edges.

Our approach is greedy and chooses that side for the placement of node wv;
which appears better with respect to the number of free edges. If the number
of right-weighted predecessors of v; 1s smaller than the number of left-weighted
predecessors, then we place v; on the right hand side. Therefore, the left-weighted
predecessors loose one free edge each. Otherwise, we place v; on the left side,
and the right-weighted predecessors loose one free edge each.

We estimate the number f of free edges. There are only n — n; nodes with
outgoing edges, and only those may have free edges. So the number of first free
edges is at most n—n;. Consider a right free edge e = (v, w) which is not the first
on its node v. Edge e was inserted when we placed w on the right side. Hence the
number a of left-weighted predecessors of w was at least as big as the number b
of right-weighted predecessors. We created 2a mated edges (the incoming edges
of w, and the edges that caused the predecessors to be left-weighted), and only
b right-free edges. So we can assign two mated edges to every free edge that was
not the first on its node. This gives f < n—nt—i—%(m—f), or f < %(n—nt)—}— %m.
Therefore, the total height is at most %n + %nt + %m < %m + n.

Theorem 8. Assume G is given incrementally. Then we can achieve an (5 +
n) X (%m + n)-grid and 1 bend per edge.

Next, we show that the analysis above is tight (at least for this algorithm).
We define a graph with n + 1 nodes, where n is divisible by 3, as follows:



Insert nodes v1, vy, v3 without any edges.
Fori=1ton/3—1do

let 7 =3-1;
insert v;11 adjacent to vj 341, ..., v;; (* inserted to the left hand side *)
insert v;12 adjacent to v1, ..., vg;/3; (* inserted to the right *)
insert v;13 adjacent to vi, ..., vj/3, vaj/341, ..., vs5; (¥ inserted to the right *)
od;
insert v,41 adjacent to vy,/s, ..., vn_1; (* inserted to the right *)

Ul,...,vjlg Uj/3,...,UQj/gUQj/:g,...,Uj

Fig.6. A graph where incremental drawing performs badly.

We can prove for this graph with n 4 1 nodes, and a total number of edges
of m = n?/3 —n/3, a bound for the height of the drawing of 1+ 2m + Zn. This
almost closes the gap between the guaranteed behavior of the greedy algorithm
and its behavior on a specific example.

5 Planar graphs

We now present a new linear-time heuristic that works for triconnected planar
graphs, and that gives an (m—n+1) xmin{%, m—n+1}-grid and m—n bends.
Every edge has at most one bend. Thus, we improve the grid-size by a factor of
2, and we decrease the number of bends by n, compared to the best previous
bounds of an m x m-grid and m bends [6].

5.1 The canonical ordering

Assume from now on that G is a triconnected, simple, planar graph. For such
graphs, we can use the canonical ordering as introduced by Kant [10]. For a node
ordering {v1,...,v,}, let G(Z) be the graph induced by v, ..., v;, in the planar
embedding as induced by G.



Lemma 9. [10] Let G be a planar simple triconnected graph with a fired planar
embedding. Then G has a node ordering V.= {vy,...,v,}, called a canonical
ordering, such that the following holds:

— (v1,v2) is an edge and belongs to the outer-face, with vy clockwise after vq
on the outer-face.

— v, belongs to the outer-face and has at least three neighbors.

— For3 < j<n—1,v; is in the outer-face of G(j—1), and one of the following
holds:

o Fither “v; s a new single node”, i.e.,v; has at least three neighbors in
G(j— 1) and at least one neighbor in G — G(j). G(j) is biconnected.

o Or “; 1s part of a new chain”, i.e.,there exists i, k, 1 < j < k, such that
forall i <1 < k v 1s adjacent to vi_1 and vi41, has no other neighbor
in G(k), and at least one neighbor in G — G(k). Furthermore, v; and vy
have each ezxactly one neighbor in G(i — 1) and at least one neighbor in

G — G(k). G(k) is biconnected.

Vs )
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Fig.7. The two different possibilities for v;.

Given an element other than the first one of the ordering, let the left foot-
point be the clockwise first node after v; on the outer-face connected to a node
in the new element. We define the right foot-point similarly.

We call a node on the outer-face of GG; open if it still has neighbors in G — G,
otherwise we call it closed. We distinguish the chain-elements further. A chain is
left-free if its left foot-point is closed after adding the chain. Or, in other words,
the highest outgoing edge of the left foot-point, which is the edge leading to
the node with the highest number in the ordering, is the one that is incoming
to the chain. Similarly a chain is right-free if its right foot-point is closed after
adding the chain. A chain is free if it is either right-free or left-free, and non-free
otherwise.

5.2 The placement

We add the nodes following the elements of the canonical ordering. Throughout
the algorithm, we maintain the invariant that the open nodes have disjoint in-
tervals, and they are sorted from left to right when going around the outer-face
from vy to vy in clockwise direction.



We start with the placement of v; and v,. We add one row and two columns
for these two nodes, and draw the edge between them as a straight line.

Assume we want to add a new non-free chain vy, . . ., v; with left and right
foot-point ¢, respectively cg. Let r, be the highest row used by any incident
edge of ¢, on the right side of c,. Similarly, let rg be the highest row used by
any incident edge of cg on the left side. We will embed the chain in the row
above maz{r,,rg} (we add a new row on top if there was no such row yet). Call
this row .. Add { —k + 1 new columns between the columns of ¢, and cg. Place
Vg, ..., v in these columns and in r.. For lack of space, we skip the proof that
this placement does not create any overlap.

If r. = ro, + 1, then, if necessary, we increase the height of the node ¢, by 1
unit, so that it now overlaps r. as well. In this case, the edge (cq, vx) is routed
as horizontal line. Otherwise, we increase the width of ¢, by one, and add a new
column between the left-continuing and right-continuing outgoing edges of c¢,,.
We route the edge (cq, vx) using this column with a bend above ¢,. Similarly
we proceed for the edge (¢g,v;). All edges (vi,viq1), i = k,...,{ — 1 are routed
horizontally along r..

Assume we next want to place a left-free chain vy, ..., v (the placement
of a right-free chain is symmetric). Let the foot-points be again ¢, and cg. Add
a new row 7. on top of the drawing. Add &k — [ columns between the columns of
co and cg. All nodes of the chain will be placed in r.. Place vy in the column of
¢ (this does not violate the invariant, since ¢, is closed after adding the chain).
Place vg41,...,v in the newly created columns. The edge (cq,vx) is routed
vertically. All edges (v;, viy1), i = k,...,l — 1 are routed horizontally. The edge
(vr, cg) is routed with a bend above cg, this adds a new column to cg.
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Fig. 8. Placement of a non-free chain and left-free chain, respectively.
Finally, assume we next want to place a new node v;. Let wq, ..., wq be the

predecessors of v;, sorted from left to right. Nodes with in-degree 2 are chain-
elements, so d > 3. Add [d_Tl] rows on top of the existing drawings. v; will
overlap all these rows. Add a new column to each predecessor of v;. Place v; in
the new column of w* = wrdy, which is closed after adding v; since d > 3.

Route the edge (w*,v;) vertically, while all other edges (w;,v;) are routed
with a bend above w;. This adds a new column to ¢, and cg. Assign rows to the
incoming edges of v; such that there is no crossing among them.



Jur

Fig. 9. Placement of new node.

5.3 Bounds

Let us now consider the height of the obtained drawing. Placing v1 and wvs
requires one row. Placing a chain vg, ..., v (free or not) requires 1 = % <

{ indeg(v;) . . indeg(v;)—1
Y ik —5 = rows. Placing anode requires [ =——5-+—

1, the total height is therefore at most % +3 ey %ﬂ = mT—I—l With a clever
choice of v,, we can shave off this %—term, and get a bound of %. Another
estimation on the height can be obtained as follows: For v; and vy we use 1 =
2+ Zle(mdeg(vi) — 1) rows. For every chain we use 1 = Zi.:k(mdeg(vi) -1
rows. For placing a node we use f%g)_—l] < indeg(v) — 2 rows, since the
in-degree is at most 3. Since we have at least one node-element in vy, the total
number of rows therefore is at most 1 + 37y (indeg(v) — 1) =m —n+ 1.

Now let us consider the width. We will count added columns when we route
incoming edges. Thus, to place v; and v; we do not count any of the used columns
— they will be accounted for when placing the highest outgoing edges of v; and
vy. Similarly, we do not count any columns when adding a non-free chain, and
only one column when adding a free chain.

Finally, when adding a node v with in-degree d, we count the d—1 columns of
the predecessors that are not the median predecessor w*. The column of w* will
be accounted for when placing the last outgoing edge of v. The only exception to
this 1s the case v = v,, in which case we must count d columns. Since the second
element of the ordering is always a non-free chain, the total number of columns
is at most ) .y indeg(v) — 1+ 1=m —n+ 1. Similarly one can estimate the
number of bends as m — n. We increase the height or width of a node only if we
add a new incident edge to it. Every node has an incident horizontally attaching
edge (one of the incoming edges), and an incident vertically attaching edge (the
last outgoing edge). Therefore, the half-perimeter of each node is at most deg(v).

It is quite straightforward to show that the algorithm can be implemented
in linear time.

rows. Since indeg(ve) =

Theorem 10. There exists a linear-time heuristic to draw a planar triconnected
graph orthogonally in an (m—n+1) x min{m—n+1, T }-grid with m —n bends.
FEvery edge has at most one bend. The half-perimeter of the box of each node s
at most deg(v).



5.4 Variations of the algorithm

We now show how to achieve related results with slight variations of the algo-
rithms. For lack of space, we have to skip all proofs.

A graph is called outer-planar if we can add a dummy-node v* connected
to all nodes and the graph stays planar. If we choose this dummy-nodes as last
node, then we can show that we get an (rn — 1) x n-drawing where all edges are
routed horizontally. So the produced drawing is a 1-visibility representation. As
opposed to all previous algorithms (e.g. [16,14,9,6]), in our drawings there are
known bounds on the height of a node.

Theorem 11. Let G be an outer-planar graph. Then G has a I1-visibility repre-
sentation in an (n — 1) x n-grid. Fvery node v has height at most deg(v).

In our drawings of planar graphs, the half-perimeter of each node is at most
deg(v), but the drawing is not necessarily in the Kandinsky-model, since we may
violate the bend-or-end property when adding a non-free chain. By changing the
placement of non-free chains, we can get a drawing in the Kandinsky-model at
the cost of introducing more bends.

Theorem 12. There exists a linear-time heuristic to draw a planar simple tri-
connected graph orthogonally planar in the Kandinsky-model in an (m — 1) x
min{m — n + 1, 3 }-grid with m — 2 bends. Every edge has at most one bend.

A slight modification of our algorithm produces 2-visibility drawings of small
area, where the best previous bound was a half-perimeter of 2n [6].

Theorem 13. There exists a linear-time heuristic to draw a planar stmple graph
without bends or crossings as a 2-visibility drawing in an (n— 1) X (n — 1)-grid.

6 Conclusion

In this paper, we presented an algorithm to compute an orthogonal drawing of
a simple graph with arbitrary degrees. We achieved a grid-size of mT'M X mT"'”
Furthermore, every edge has exactly one bend, thus the number of bends is m.
This result improves previous results by a factor that approaches 2 as m gets
large relative to n. We also, for the first time, managed to show a non-trivial
bound on the box size of at most degT(v) for node v. For the incremental scenario,
where the drawing has to be produced as the nodes are given in a sequence,
we achieve a grid-size of (2 + n) x (2m + n), which is surprisingly close to the
results for the static case.

Many open problems remain:

— In the static scenario, we would like to remove the “%” terms. It arises if

the in-degree or out-degree of a node is odd, since we need to add a % as

a correction term for rounding. At least one of the two terms cannot be
avoided for nodes with odd degrees. But can we reduce it if there are many

nodes with even degree?



— It is not clear how much improvement can be achieved in other models. If

we drop the restrictions on the size of boxes, does the grid-size get smaller?

— Our algorithm for the static case does not consider planarity of the graph,

and in fact, may create O(n?) crossings for a planar graph. Can a grid-size

of (roughly) % in both directions be achieved for planar drawings as well?
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