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Abstract

Greedy Routings a class of routing algorithms in which the packets are &vded
in a manner that reduces the distance to the destinatioreat step. In an attempt to
provide theoretical guarantees for a class of greedy rguatigorithms, Papadimitriou
and Ratajczak [PRO5] came up with the following conjecture:

Any 3-connected planar graph can be drawn in the plane satlidhevery
pair of verticess andt a distance decreasingath can be found. A path
s = vy, v, ..., = tin adrawing is said to bdistance decreasing ||v; —
t]| < JJvicr — t||,2 < i < kwhere]|...| denotes the Euclidean distance.

We settle this conjecture in the affirmative for the caseiahtyulations.

A patrtitioning of the edges of a triangulatighinto 3 trees, called theealizerof G,
was first developed by Walter Schnyder who also gave a draalggyithm based on
this. We generalize Schnyder’s algorithm to obtain a whtdsscof drawings of any
given triangulationG. We show, using the Knaster-Kuratowski-Mazurkiewicz Theo
rem, that some drawing @f belonging to this class is greedy.



1 Introduction

With the increasing use of large wireless communication systems comes arsingne@ed for reliable and
scalable routing algorithms. Internet routing is accomplished using IntBnoébcol addresses which are
hierarchical and encode topological and geographic information daheutodes in the network. Such a
protocol is not possible in aad-hocnetwork, such as sensornets, where little information about geographic
proximity or network topology can be gleaned from node identifiers.

One important family of routing algorithms used for such networksésgraphic (or Geometriadput-
ing. This is a family of algorithms that use the geographic location of the naldsea addresses. See,
for instance [KWZZ03, KK0O, BMSU99, GGHO1]. One such algorithm is tHeuclidean Greedy Routing
algorithm which is conceptually quite simple: Each node forwards the pazkieéneighbor i.e.,a node it
can communicate directly with, that has the smallest Euclidean distance to thextiestifThis algorithm
has the disadvantage of not being able to deal l@itesor voidsin the networkj.e., nodes which have no
neighbor closer to the destination. To deal with this, variants of the algorgboh(afacerouting, which
involves routing arounfhceg have been proposed, [KWZZ03, KKOQ].

Geometric routing has the following two drawbacks: (i) It needs the globsitipn of every node in
the network, (ii) it relies entirely on the global position and as such carcomuat for local obstructions
or the topology of the network. Since GPS units are quite expensive in tdrbwtlfomoney and power
requirements, it is quite a restrictive limitation to require every node in the nketwdrave one.

Both the above issues were addressed in [RPSS03], where a vdrggeedy routing which just uses
the local connectivity information of the network without needing the globaitipm of any node, was
discussed. The algorithm first computes fictitiousvistual coordinatesfor each nodei.e., it draws the
graph of the network (where each node in the network is representeddsiex of the graph and two vertices
are adjacent iff the pair of nodes they represent can communicate dilattlye Euclidean plane and routes
greedily using these locations. The authors obtain experimental evideoweng that this approach makes
greedy routing more reliable. However no theoretical guarantees Wweamed.

In a bid to place this approach on a more solid theoretical footing, Papadimamib&atajczak [PRO5]
investigated classes of graphs on which greedy routing (without havimgyton variants likdacerouting)
could be guaranteed to woiike., graphs which can be drawn in the plane withlakiesor voids They came
up with the following conjecture:

Let adistance decreasingath in a drawing of a graph be a path= v{,v1,vs,...,v; = t such that
|lvi — t|| < [Jvi—1 —t]|, 2 <14 <kwhere|...| denotes the Euclidean distance.

Conjecture 1 ([PR0O5]) Any 3-connected planar graph can be drdwen the Euclidean plane such that
there exists a distance decreasing path between every pair of vertites griaph.

Such a drawing is called@reedy Drawing of the graph. Itis easy to see that using the greedy drawing
of a graph (assuming such a drawing exists) as the virtual coordinattes wértices guarantees that greedy
routing will always work.

1.1 Our Results

We settle Conjecture 1 in the affirmative for the case of planar triangulatiwhghas obtain the first non-
trivial class of graphs for which this class of greedy routing algorithmmsbeaguaranteed to work.

!Note that the conjecture in [PRO5] usestibed instead of ‘traw’. To be consistent with the Graph Drawing literature, we
use ‘draw’.



We show in fact, that glanar drawing of any given triangulation can be obtainiegl,, one in which no
pair of edges cross.

The result is obtained by applying tiKeaster-Kuratowski-Mazurkiewickheorem, which is known to
be equivalent to thBrouwer Fixed Point TheorenWe believe that the technique used in obtaining the result
might be of independent interest and might prove helpful in showing tisteece of plane drawings with
other properties.

Note that greedy drawings can be trivially seen to exist for many simpleedasgyraphs, like graphs
with Hamiltonian circuits, alli-connected planar graphs (since they have a Hamiltonian circuit by atheor
of Tutte [Tut56])etc It is not very difficult to show that thBelaunay triangulatiorof any set of points in
the plane is also greedy. But thus far no non-trivial class of graphsthighproperty was known.

2 Preliminaries and Related Work

Given an-vertex graphG(V, E), adrawing of G is a mapping of the vertices @f to points and of the
edges of7 to curve segments (with the images of the corresponding vertices as ets) pothe plane. We
consider only those drawings in which the edges are mapped to straightdimests and so the drawing is
fully specified by the images of the vertices.

Recall that gplane graphis an abstract planar graph whose embedding has been fixed, usiribesa
Hopcroft-Tarjan algorithm [HT74]. In the rest of the paper we assuraedhis plane triangulation. We
consider onlyplanar drawingsof graphs,.e., drawings in which no pair of edges cross, in this paper. So
any reference to a drawing of a graph must be taken to mean a planantstiraégdrawing.

2.1 Drawing Planar Graphs In The Plane

An overview of graph drawing algorithms can be obtained from [TBET®804]. We describe some well-
known algorithms for obtaining planar straight-line drawings of planarltggap

1. Rubber Band Embeddir{dut60]: This algorithm has a elegant physical interpretation: Fix the po-
sitions of the vertices of some face of the graph and replace all othes é&ggsprings (or “rubber
bands”). It can be shown that if the graph is 3-connected and plagaithie equilibrium position of
the nodes gives a planar straight line drawing. Many interesting gersraiiz of this approach have
been obtained, see for instance [LLW88]. The drawback of this methoditgha size of the grid
required for the drawing may be large (exponential in the number of ve)tice

2. Canonical OrderinddFPP88]: This result showed for the first time that a planar straight-laidg
of a planar graph could be obtained on grid of polynomial (in €gt) x O(n)) size. This approach
was used in [Kan92] to obtain drawings satisfying various bounds on thienonim angle, bends, grid
sizeetc.

3. Schnyder’s Realize[$ch90]: The author describes an elegant algorithm for partitioningapeseof
a triangulation into three trees and obtaining a planar drawing (@(va x O(n) grid) of the graph
based on this. Our result uses the techniques developed here andegptbisch is described in detalil
in Section 4. Also see, [Rot05, FPSO05, Fel01].

On a related note, it was shown recently, [KleO6b], that any graph asealy drawing in thélyper-
bolic plane. But this might require an exponential sized grl, Q2(n) bits might be required to store the



coordinates of a single vertex, [KleO6a]. This has been further eagblior[May06]. In contrast, examples
of graphs with no greedy drawing in ttiiclideanplane were obtained in [PRO5].

3 Outline

We describe the approach of [Sch90] in Sections 4 and 5. The detaitswothie edges of a triangulation
can be partitioned into three trees is described in the former section and theséatien describes how
a drawing of the triangulation can be obtained from this partitioning and akscrides some interesting
geometric properties of these drawings.

In Section 6, we investigate greedy paths in drawings and show that amwyndrin which every face is
good Definition 9, is greedy. In Section 7, we prove the main result of the phpéthere exists a greedy
drawing of the triangulation, by showing that there exists a drawing in whietydace isgood

In Section 8, we prove a technical result on the sum of weights dfealfaces of a drawing, which is
needed for proving the main result.

4 Schnyder Realizers of a Triangulation

We designate a (triangular) fagg of G as theexteriorface. All vertices (edges) not belonging fg are
called theinterior vertices (edges). Let the verticesfafbe Py, P, andP,. We define the ordgtPy, P, P»)
to be the “counter-clockwise” (CCW) order.

P
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Figure 1: A triangulation and its realizers. The leftmost figure contains @kttrees together and the three
edges of the exterior face, which do not belong to any tree. The remdigiumgs show each of the three
trees separately.

Theorem 1 ([Sch90]) Given a plane triangulatiorz(V, E'), there exist three directeeldge-disjointrees,
Ty, Th andTs, called therealizerof G, Figure 1, such that:

1. T; is rooted atP;, i € {0, 1,2} and contains all vertices af exceptP;;; and P,_; (the indices are
mod 3).

2. All edges of; are directed towards the root and every edgé axcept those belonging to the exterior
face are contained in exactly offé.

3. Each interior vertexp, has exactly3 outgoing edges, one for ead). The edge belonging t&,
is followed by the one belonging f§ which is followed by the one i, in CCW order around,
Figure 2a.

Note that there might be any number (including zero) of incoming edgeechT; at any vertex.
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Figure 2: (a)The order of the edges belonging to different treesidraninternal vertex. There are exactly
three outgoing edges, one belonging to each tree. There can be angm{iimluding0) of incoming edges.

(b) The paths irfil; from v to P; are vertex disjoint and divide the graph into three regions. (c) Obtaining
Realizers from the Canonical Order. Note that> 2 sinceGy.; must be biconnected. i = 2 then the
edges shown directed towards, ; will not exist.

Letv € G be an interior vertex. Then, it follows from the above that there exis¢¢tid) path$;(v)
fromv to P, inT;,¢ = 0,1, 2 called thecanonical path®f v. From the fact th§’; are edge-disjoint and the
order of the edges aroundlitis clear thatP; (v) andP;(v) must be vertex disjoint (except foritself which
appears on all three paths)iit£ j. Hence theP;(v),i = 0, 1,2 divide the graph’ into three “regions”,
Ry(v), Ri(v) andRz(v), as shown in Figure 2b.

4.1 Schnyder Realizers from Canonical Ordering

Let fo = (P, P1, P») be the external face @f. An ordering of the vertices, = Py, va = P1, ..., 05, ..., 0y =
P, is called aCanonical OrderinddFPP88], if:

e The graphGy induced by vertices, vs, . . ., vy iS biconnected and the boundary of its exterior face
is a cycleC), containing edge’, P; .

e \ertexwy, 1 lies in the exterior face ofr;, and its neighbors form a subinterval (of length at lejst
of the pathCy, — Py P;.

A simple way of using the canonical ordering to find the realizer§;oivas obtained in [dFPP88]
and [Bre00]. We describe this below:

We process the vertices in the decreasing order of their rank in theicahordering. First, we add all
internal edges incident ta, (= P») to treeT; and orient them towards,. Let the neighbors of;1 in Cy
bev), v, ..., v),. We add the edgey. v} to treeT; and orient it towards’. The edgevv), is added
to tree7; and oriented towards,,. All other edges (if any) are added to trEgand oriented towards; , 1,
Figure 2c.

5 Schnyder Drawings and Their Properties
Let each internal facég; be assigned a non-negative weightsuch thatzfgl’5 w; = 1. Letwg,(, be the
sum of weights of all faces in regiaR; (v), Figure 2b. We can obtain a drawing@fin the following way:

Place vertex at the point(w g, (v), Wk, (v): WRy(v))-



Recall that we only deal with straight line drawings and so the drawing Sfsgeby the positions of
the vertices. Since the total weight of all facedljsevery vertex ofG is placed on ther +y + 2z = 1
plane. Notice that the external verticBs, P, and P, are always placed at the poirits 0, 0), (0,1,0) and
(0,0, 1) irrespective of how the weights of the internal faces are assigned atthéise points determine an
equilateral triangle (on the + y 4+ 2z = 1 plane). Also notice that all internal vertices are placed inside this
equilateral triangle.

The drawing obtained by the above method is defined to®ehayder Drawing of G.

The set of solutions to the equati@jf’:”‘l’5 w; = 1 such that thev; are non-negative can be represented
by the unit simplexs in 2n — 6 dimensions, witl2n — 5 vertices. Hence, for each poipte &, a Schnyder
drawing ofG can be obtained.

The following theorem, while a generalization of the result proved in [SEH®lows directly from the
proofs given there.

Theorem 2 ([Sch90]) In any Schnyder Drawing of a triangulatiad, the edges are non-intersectirigg.,
the drawing is planar.

Definition 3 A non-degenerateSchnyder Drawing is defined to be one obtained by assigning strictly posi-
tive weights to the faces.

In the rest of the paper, we use the same notation for a vexéx: and the point in the plane it is drawn
on. The rayfo?l is defined to have a slope 06f and all angles are measured counter-clockwise from this
ray. So, the rayTPg) has slop&0°, ]?Pf has slope300° and so on. Recall that all drawings we consider
(and the pointd%, P, and ) lie on thez + y + z = 1 plane.

The following is a key property of Schnyder drawings.

Lemma 4 (The Three Wedges Property [Sch90, Rot05])n every Schnyder drawing the three outgoing
edges at an internal vertex have slopes that fall in the interval60°, 120°] (73), [180°,240°] (Ip) and
[300°,360°] (11), with exactly one edge in each interval, as shown in Figure 3a.

Further, if the drawing is non-degenerate, no edge has slope which idtipta of 60° and every edge
has positive length.

In the rest of the paper, we prove many propositions specifically foildegenerate Schnyder Drawings.
Extending them to degenerate Schnyder Drawings would make the piiteftpssy as degenerate drawings
might have zero length edges. Also, non-degenerate drawings ficeesifor our purpose. So we disregard
degenerate drawings.

Lemma 5 The incoming edges (if present) have slopes in the following refigef°, 60°], 73 : [120°, 180°]
andT : [240°,300°], Figure 3b.

Proof: Letv'v be an edge directed from towardsv. Applying Lemma 4 at’, the result follows. Ol
Recall that any number (up to linear) of incoming edges might be presany akertex.

Lemma 6 (The Enclosing Triangle Property [Sch90, Rot05]) 1. Given a vertexo and an outgoing
edge(v, w) belonging, without loss of generality (wlog), 1@, the equilateral triangle formed by
drawing lines with slopes d@f°, 60° and 120°, as shown in Figure 3c is free of any other vertices. A
similar result holds if(v, w) belongs tdl} or T5.

2. For any facef = (u, v, w) the triangle formed by drawing similar lines as shown in Figure 3d is also
free of other vertices. This triangle is called teieclosing trianglef f.

Proof: (1) follows from Lemma 4.2) follows from (1) and the fact that the drawing is planar. U

6



() (d)

Figure 3: (a) The shade@D° wedges contain exactly one outgoing edge each. The trees containing the
edges are marked. (b) All incoming edges (if present) fall in the shageddes. (c) The equilateral triangle
determined by lines throughandw with slopes)°, 60° and120° is free of other vertices. A similar result
holds if edgeuw were to belong td; or T; (with the equilateral triangle changing appropriately) (d) The
enclosing triangle of a face.

6 Greedy Paths in Schnyder Drawings

A face of the triangulation is said to kwyclic if its edges form a directed cycle and is said todwgclic
otherwise. Any cyclic face of a graph can s&ckedby adding a vertex adjacent to the three vertices of
the face and adding the new edges to each of the trees as shown in Fagufr&id breaks the face into
three acyclic faces. After a greedy drawing has been found, the aedexvcan be deleted without affecting
the greedy paths between the other vertices. Hence, we will assume érneromthat every face in the
triangulation is acyclic.

Notice that any acyclic face must have a vertex (like vertéx face (u,t,v) in Figure 4a) with two
outgoing face edges which must belong to different trees. The facalisodaelong to tre€T; if these two
outgoing edges belong to tre€s ; and7; .

w

(@ (b)

Figure 4: (a) The cyclic facéu, v, w) is stackedby adding vertex and its incident edges. The edgeis
added to the same tree as, edgetv the same tree asv andtw the same tree asw. (b) The triangle
(u,z,2’) is equilateral.|lv — z|| < ||u — z|| irrespective of where lies in the shaded region and where
lies onza’.

The following lemma will prove useful:

Lemma 7 Letu be some vertex angv an edge incident to it. Consider@°-wedge at: containing the
edgeuv, as shown in Figure 4b and let be any vertex in the shaded region. The trianglez, z’) is
equilateral andv € zz’ and assume that ¢ xx’.

Then,||v — z|| < [|u — z||.

Proof: Let! be the perpendicular bisectorob. It is easy to see that¢ [ and it lies on the same side bf
asv. Hence, it follows thafjv — z|| < ||u — z]|. O
To show that a drawing af is greedy, it clearly suffices to show the following:
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For every pair of (ordered) distinct vertices v € V, there exists some neighborof say v’
such thatju — v|| > ||u/ — ]|

In the rest of the paper we will show that a non-degenerate Schnyalging) of G exists which satisfies
the above property.

X
X, pé—V .
@) (b) (c) (d)

Figure 5: (a) An acyclic face with its active region shaded. The thin linge Bbbpes that are multiples of
60°. The active region at is bounded by rays with slops0° and300°. (b) Note thatv andv’ need not
be adjacent. (c) Vertices’, v andw! form a face. Edge’u' could be directed either way. (d) Tlyeeedy
regionof face f = (u, v, w) is shown shaded.

Let f = (u,v,w) be an acyclic face as shown in Figure 5a. Letdah#ve regionof Zuvw, denoted by
A 0w, be the wedge with sides of slopg8)° and300° at vertexu. This is shown shaded in Figure 5a.

Lemma 8 Let f = (u,v,w) be an acyclic face off and in some non-degenerate Schnyder Drawing of
let z be a vertex in the active region gfuvw. Then,||v — z|| > min(||u — z||, [[w — z]|).

Proof: Moved to the Appendix due to lack of space. Ll
Let v andv be a pair of non-adjacent vertices. It follows thalies in one of three region&y(u),
R (u) or Re(u) (or their boundaries), Figure 2b. Assume, wlog, th&es in regionRz(u), i.e.,the region
bounded by the edgg, P; of the external face and the patRgu),: = 0, 1 from u to Py, and P, Figure 5b.
The pathPy(v) from v to P, must intersect eithePy(u) or P;(u). Assume wlog, that it intersect®(u)
and letv’ = Py(v) N Py(u). Letu® (u') be the neighbor ofi onPy(u) (Py(u)).
The following possibilities arise:

Casel v/ = u: Let Py(v) = (v = wvo,v1,09,...,0%_1,0x = V' = u,vp41,...,Ps). It follows from
Lemmas 7 and 5 thdtw — v|| > |Jvg—1 — v|| in every non-degenerate Schnyder Drawing-of

Case Il u has one or more edges directed inwards lying between the eddeand uu' in the embedding
Let the edge following:u® (in CCW direction) beuw/, Figure 5b. It follows from Lemma 4 that
lies in the active region af v uw’.

Hence from Lemma 8 it follows that eithé® — v|| < |ju — v| or ||[v’' — v|| < |lu — v| in every
non-degenerate Schnyder drawing.

Case Ill The vertices:,u” andu! form a (acyclic) face ofx, Figure 5c In this case there might exist some
Schnyder drawings in which for every neighbdrof u, |u’ —v|| > ||u—v||. But we will show below
that there must exisomenon-degenerate Schnyder drawing in whiel — v|| < ||u — v||.

Thegreedy regionof a facef = (u, v, w) is the region bounded by the edge and the path$,(v)
andP; (w) as shown in Figure 5d. Note that even though the greedy region depettids drawing, the set
of vertices falling in this region is fixed by the realizer@f
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Definition 9 Let f = (u, v, w) be a triangular face with edgesy anduw directed away from:, Figure 5d,
and lete > 0 be some constant depending only on the number of vertiogs whose value will be fixed
later. Then, in a Schnyder Drawing 6f, f is said to begoodif

I The length of every edge #fis at least,/e.

Il For every vertex in the greedy region:

lu— 2| = llv— 2> > e if Pa(2) N Polu) #
lu— 2| = llw = 2> > € if Pa(z) NPr(u) #

and is said to bdvad otherwise.

Note that for very vertex in the greedy region exactly one &% (z) N Py(u) andPa(z) N Py (u) is
non-empty.Clearly, a non-degenerate drawing in which every face is good, is greed

7 The Main Result

The following theorem will prove useful:

Theorem 10 (Knaster-Kuratowski-Mazurkiewicz [KKM29]) Let ad-simplex with vertice$v, ..., vg},
be covered bglosedsetsC;, i € {0,...,d} such that the followingoveringcondition holds:

Forany@ C {0,...,d} the face spanned by the verticps|i € Q} is covered by J;, Ci.
ThenNcqo,..ay Ci # 0.

This theorem is known to be equivalent to the Brouwer Fixed Point Theore
The main result is the following:

Theorem 11 Given ann-vertex plane triangulatiofd, there exists a non-degenerate Schnyder drawing of
G which is greedy.

Proof: Recall that for each point € &, the unit simplex witl2n — 5 vertices (in2n — 6 dimensions), a
Schnyder Drawing of7 can be obtained.

We definggood setsxy,,...,Gy,, , whereGy, C & Vi, inthe following way: Letw = (w1, wa, ..., wan—5) €
6. Thenw € Gy, iff in the Schnyder drawing ofs corresponding tav, the facef; is good. Note that the
definition of these good sets depends on the valugDEfinition 9).

In Section 8.1, it is shown that in any Schnyder drawing-ahe sum of the weights of all the bad faces
is always strictly less tha, if € is small enough (Theorem 14). Lpt= (po,...,pan—5) € & lie in the
interior of somek-face of . Wlog, we can assume tha, p1,...,px > 0andpi1 = ... = pap—5 = 0.
Since the sum of weights of bad faces is always less thdnfollows that some facg; wherei € [0, k]
must be good in the drawing corresponding to ppintiencep € Gy, and so the KKM covering condition
is satisfied.

It is easy to see that the sets, are closed. The condition that the length of the edge$ afe at least
V€ can be expressed in the folfh> ¢ whereP is a quadratic polynomial, equation 1. Itis not very difficult
to see that Condition Il in Definition 9 can also be expressed as a polynamfat{ quadratic) inequality.
Hence, the seti;, can be expressed as the set of all points satisfying some weak polynoetahilities.
HenceG/, is closed.



From this it follows that thé ;, satisfy the conditions of Theorem 10.

Hence,Nic1, on—5 Gr # 0. Letg € Mgy, 2n—5) G- It follows that every face is good in the
Schnyder drawing correspondingdgowhich implies that this drawing is greedy.

It is possible that the drawing corresponding;tis degenerate. But sinee> 0 and the drawing varies
continuously with the set of face weights, we can always pick anothet goatose enough tg such that

the drawing corresponding tg is non-degenerate and greedy.
Ol

8 Schnyder Drawings and the Weights of Faces

¥

Figure 6: The sum of weights of faces in different regions are dertojed b, ¢, d, e and f. Note thatw
andw’ could possibly be the same vertex, depending on how the @dds directed. The analysis below
remains the same in either case.

In this section we show that sum of weights of the bad faces in a drawing @fiimgulation is always
strictly less tharl for e small enough.

Consider the facé’ = (u, v, w) in Figure 6. The sum of weights of faces in various regions are marked.

All paths shown in the figure are canonical patRg(()) starting from some vertex. Note thais the weight
of the region demarcated hyw'w wherew andw’ could possibly be the same vertex.
The coordinates of the the points the vertices are mapped to are given lhtdoall that the graph is

being drawn on the +y + z = 1 plane, so the points lie on this plane. The vectors corresponding to various

edges are also given below. Note thatrepresents the first coordinate of vertex:; represents the second
coordinate of vertex and similar is the case wity.

u = (up, r1+a+f, yao+b+c+d+e)

v = (up+a+b, 1+ f, yo+c+d+e)

y = (wta+b+tct+d+f, z1+e, Y2)
u—1y = (—a—b—c—d—f, a+f—e, b+ct+d+e)
v—y = (—c—d—f, f—e, c+d+e)
u—v = (—a—b, a, b)

It follows that the length of the edgev is given by:

lu—v||? = 2(a® + b* + ab) 1)

10



Lemma 12 Let W,,,,, be the weight of facéu, v, w). If Wiy > \ﬁ every edge of facgé has length at
least,/e.

Proof:

Ju—vl? = 2(a®+b*+ab) >2W2,, >¢ (2)

uvw

An identical argument applies to edgev. For edgevw, notice that from Lemma 4/vuw > 60°.
Hence the edgew is longer than at least one of the other two edges.
Ol
Note thath > W,.., Sinceb is the weight of all faces in regiomw’w.

Theorem 13 Assuming thab > \ﬁ the following conditions are necessary (but not sufficient)|ior
ylI> = v —yl? < e

a > b 3)
e > b (4)
a < Va—bandb<+va-—>b (5)
Proof: Moved to Appendix due to lack of space. Ll

8.1 The Maximum Weight of Bad Faces

Let pointw = (wsy,...,we,—5) € & be such that in the Schnyder drawing, every fgcevith weight
w; > 0is bad. Then, the faces can be divided into three types:

Type A : The face has weiglttand can be either good or bad.

Type B : The face has weight strictly less thgng and is bad because either one of its edges is shorteethan
(and so violating Condition | in Definition 9) or because it violates Condition Ddfinition 9.

Type C : The face has weight at Ieagfg and is bad because it violates Condition Il in Definition 9.
If € is small enough, then “most” of the weight must be present in faces of Type

Theorem 14 In any Schnyder drawing @¥, the sum of weights of all faces of tyBeand C' is strictly less
thanl.

Proof: The proof has been moved to the Appendix due to lack of space. Wemivetine below:

We try to find a point inG such that, in the Schnyder drawing corresponding to it, every face with
positive weight is bad. But we run into a contradiction, thus showing thet aypoint cannot exist.

Letvy,v9,v3,...v, be the canonical order @f wherev,; andv, are the vertices of the bottom edge of
the external face and, is the topmost node. We start with the edge, and construct the triangulation by
adding vertices one by one according to the canonical order. Thisiges®gs an ordering on the faces. As
faces are added, we try to assign weights to them in such a way that neithqaositive weight is good.
This condition places an upper bound on the weight each face canigaetks Once we are done with
all faces, we show that the sum of weight of all faces (good or badyreeél to be less thanh which is a
contradiction.

Ol
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9 Conclusions

We have been able to show that every triangulation has a planar greedygin the Euclidean plane. As
for algorithmic questions, the following iterative approach works quite wedractice:

o Let W = (wp,wr, ..., wa,_5) € & be the weights of the faces in iteratian

o LetWith = & (wp,wh, ..., wh, 5) wherew; = w; if f;is good in the drawing corresponding to

W' andw); = 2w; otherwise andV" is the normalizing factor such thay*+! € &.

e Fori =0, Ietw0:w1 = ... = Wo—5 = TES

This algorithm converges quite fast, but so far no theoretical bourdsrenwn. We are confident that
good bounds can be obtained.
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11 Appendix

The following Lemma is not used directly in the paper but is helpful becaysevides some intuition as
to why the Schnyder drawing framework can lead to greedy drawingsaphg.

Lemma 15 Given any two vertices,v € G, then inany non-degenerate Schnyder drawing@f there
exists a neighbor of, sayu’ and a neighbor of), sayv’ such that|u — v|| > min(||u" — v]|, [|u — V'|]).

Proof: Follows from Lemmas 4 and 7. ]

11.1 Proof of Lemma 8

Proof: From Lemma 4, it follows that lies below the horizontal line (denoted bin Figure 5a) through
w.
Sincez lies in the active region of vertex, only two possibilities can arise:

¢ 2 liesinthe wedge bounded by rays of sld@8° and240° at vertexv (the wedger;vzs in Figure 5a):
From Lemma 7, it follows thatv — z|| > |lu — z||.

e 2 liesinthe wedge bounded by rays of sl@d@° and300° at vertexv (the wedgerovzs in Figure 5a):
It follows thatz must lie below the horizontal line through sinceu and so the whole active region
lies below this line.

Now applying Lemma 7 again it follows thgv — z|| > ||w — z||.

Hence, in every casey — z|| > min(||u — z||, ||w — z|]).

]
11.2 Proof of Theorem 13
Proof:
lu—yl* = [lo—yl* < e
— ala+b+c+d+2f—e) + b(b+2c—|—2d+f+e)<%. (6)

Sinceb > \/g and all variables are non-negative, we must have:

a+b+c+d+2f —e<O,
— b<e.
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Rearranging the terms of equation 6, we obtain:
ala+b+c+d+2f)+bb+2c+2d+ f)+eb—a) < ;
= b—a<0 = a>hb.

for the same reason as before.
Rearranging the terms of equation 6 again we obtain:

a(a+b+c+d+2f) +bb+2c+2d+ ) +e(b—a) < ,

= a? +e(b—a) <0,
= a? < e(a—b),
= a<+va—>b (sincee <1).

12 Proof of Theorem 14

Figure 7: (a) The first faced added. Note that the veftgand the edges, Py and P, P; have not yet been
added to the graph and are shown only for clarity.(b) and (c) Facemettahen the vertex; ,; is added
to G. Note that the path fromy, 1 to P, is not present i, and is shown only for clarity.(d) Note that
only facef; = (vjy1,%;, ;1) is shown to avoid clutter. (e) Only fagg = (vj1,t, t—1) is shown for the
same reason. Note thgt lies to theright of f;.

15



Proof: Proof by contradiction. We try to find an assignment of weights to the facdsthat every face
with positive weight is bad and show that this would require the sum of weajl#B faces to be less than
1, which is impossible.

Letwvy,ve,vs, . .. v, be the canonical order ¢f wherev; andv, are the edges of the bottom edge of the
external face and,, is the topmost node.

We start with the edge, v and build the graph by adding vertices one by one according to the cahonic
order. The vertexs and the facef, it forms withv; andvy are shown in Figure 7a. Since the greedy region
of v3 contains no vertices, it is clear thft cannot be a type C face. Heneg, < \/g

Let G, be the graph induced by the vertices vs, . . ., v and let weight of all faces of/;, be W.
Assume thatV;, — 0 ase — 0. This is clearly satisfied b3 = wy, < /5. LetW = max (W, \/5).

We will show thati¥ ., also satisfies this property.

We now addvi. 1 to G and try to assign weights to the new faces formed.Wgt,, be the maximum
weight that can be assigned to the new faces while ensuring that ecerwitn positive weight is bad. We
have the two following possibilities:

Case | : vi41 has only two neighbors itf;. Let them be vertices andw as shown in Figure 7b. In this
case, the only new face {&, v 1, w) which belongs to tre@. Then it follows from equation 4 that
Whew < W, as otherwise the face is good.

Case Il : v, 1 has more than two neighbors, sayt, . .., t, andw as shown in Figure 7c. The new faces
arefi1 = (u,t1,vg41) Which belongs to tree, f,,, = (vk+1, tm,w) which belongs to tre@ andm — 1
faces of the forny; = (t;, vi+1,ti+1) €ach of which may belong to either tré@r 1. Letw;y, be the
weight of facef;.

Case i : None of the new faces have weight more tHanHence W,,.., < nW asm + 1 < n.

Case ii :At least one face, say belonging to treehas weight more thal’, Figure 7d
Let! € [1..m] be the maximum value such that: (@), > W and (b)f; belongs to treg. Let
I" € [l + 1..m] be the minimum value such that:(@}, > W and (b)f; belongs to tre@.
Of course such aff need not exist. If it does not, then, in Figure 7d every face in the reigion
has weight at mosti’. By equation 3 applied to facef;, g < h if f; is to be bad. Every new
face must fall in one of the regionsor h. Sinceh < nW, we havelWW,.,, < g + h < 2nW
(sincem + 1 < n).
If I’ does exist, then by equation 3, applied to fdegg’ > A’ in Figure 7e. Note that is possible
to havel = 1 and/orl’ = m.
Let S(g),S(¢'), S(h) andS(h') denote the set of faces in the regions so marked in Figure 7d
and 7e. Sincd} lies to the right off;, it is clear thatS(g) C S(¢') andS(R’) C S(h) and by
equation 3 applied to facesand f;, h > g andg’ > 1/'.
Let Dyyr = S(g")\S(9) and Dy = S(R)\S(R') andWyy (W) be the weight of the faces in
Dyg (Dpy). We have:

g+ ng/ = g’ andh’ + Wy = h
= Wyg + Wiw > ¢’ — ' sinceh > g
and  Wyg + Wy > h — g sinceg’ > 1/

2Note that the face shown in Figure 6 in the derivation of equation 3 belortigse® while facef; and f; belong to tree$ and
1. Of course this does not really change anything as the same arguppdiesa To see how equation 3 (or equation 5) applies to
face f;, compare Figures 6 and 7d where vertiegsi, t;, t;—1 map tov, u, w in that order.
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The only new faces in the sei3,,, and Dy, aref;, i € [l + 1,1’ — 1]. Each of these faces have
weight at mostV (by definition ofl and!’). Since the sum of all the old faces is at mdsf we
have:ng/ + Whp <2(W +nW) =2(n+ 1)W.

From equation 5 applied to fac¢sand fy, it follows thatg, ¢’, h, b’ < \/2(n+ 1)W.
HenceW,.,, < max(2nW,cv/nW) wherec is some small constant. Sind& — 0 ase — 0,

we can assume thatis small enough tha@nW < 1 and soW,,.,, < ¢vnW. Recall thatiV =
max (Wy, 1/5). It follows thatWj,.1 = Wi 4+ Wyew < W + ¢ VoW < ¢/vVnW. HenceW,, <

c’\/n max(Wy, \/5). Notice thatiV,; — 0 ase — 0.

Hence it easy to see that by pickiaggmall enough, we can mak&,, < 1 (in fact, we can make
W, — 0). But the total weight of all faces must be exactlgnd so this gives us a contradiction and
the result follows.

U
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