E3 – Esercizi sul Capitolo 3 Algoritmi, Linguaggi e Programmi

Esercizio 1 (esercizio 3.1 del libro di testo). Considera il problema di stampare sul video di un calcolatore tutti i numeri primi. Può esistere un algoritmo che risolve questo problema? Motivare adeguatamente la risposta.

Esercizio 2 (esercizio 3.2 del libro di testo). Mostrare un flow chart dell'algoritmo "Massimo-Tra-Due-Numeri", di seguito descritto:

Algoritmo: Massimo-Tra-Due-Numeri

input: $a, b \in \mathbf{R}$

output: $m = \max\{a, b\}$

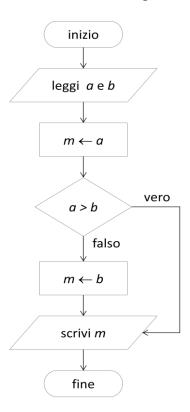
- 1. $m \leftarrow a$
- 2. if (a > b) goto 4
- 3. $m \leftarrow b$
- 4. halt

Esercizio 3 (esercizio 3.5 del libro di testo). Mostrare un flow chart dell'algoritmo "Calcola-Media", di seguito descritto:

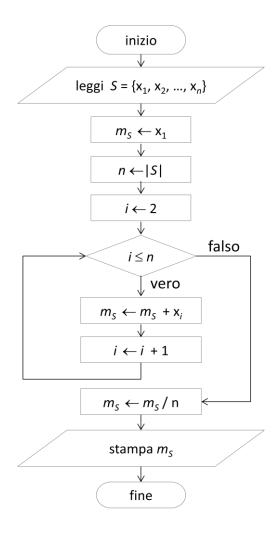
Algoritmo: Calcola-Media

input: $S = \{x_1, x_2, ..., x_n\} \subset \mathbf{R}$

output: $m_S \in \mathbf{R}$


- 1. $m_S \leftarrow x_1$
- 2. $n \leftarrow |S|$
- 3. $i \leftarrow 2$
- 4. while $(i \le n)$ do{
- 5. $m_S \leftarrow m_S + x_i$
- 6. $i \leftarrow i + 1$
- 7. }
- 8. $m_S \leftarrow m_S/n$
- 9. halt

Esercizio 4. Usando soltanto istruzioni di controllo consentite dalla programmazione strutturata, scrivere lo pseudo-codice di un algoritmo che, data in input una sequenza s_1 , s_2 , ..., s_n di numeri interi, fornisce in output il massimo valore di tale sequenza.


Soluzioni

Esercizio 1 - svolgimento. Un algoritmo rappresenta una sequenza finita di istruzioni; è richiesto dunque che un algoritmo termini in un tempo finito, visto che ogni istruzione deve terminare in un tempo finito. Poiché è noto che esistono infiniti numeri primi, la loro elencazione richiederebbe inevitabilmente un tempo infinito. Dunque, non può esistere un algoritmo che stampa a video tutti i numeri primi.

Esercizio 2 - svolgimento. Un flow chart è mostrato di seguito.

Esercizio 3 - svolgimento. Un flow chart è mostrato di seguito. Si osservi come la parte del diagramma relativa all'istruzione iterativa *while* inizi con la verifica di una condizione di verità: se la condizione è vera si eseguono due successive istruzioni per poi ritornare sulla condizione; se la condizione è falsa, allora si abbandona il blocco di istruzioni previste dal *while* e si completa il calcolo e la stampa della media.

Esercizio 4 - svolgimento. Ecco di seguito il codice di un algoritmo che calcola il massimo di una sequenza di numeri interi.

Algoritmo: Massimo-della-Sequenza

input: $S = \{s_1, s_2, ..., s_n\} \subset \mathbf{Z}$

output: $m \in \mathbf{Z}$

- 1. $m \leftarrow s_1$
- 2. $n \leftarrow |S|$
- 3. $i \leftarrow 2$
- 4. while $(i \le n)$ {
- 5. if $(m < s_i)$
- 6. $m \leftarrow s_i$
- 7. $i \leftarrow i + 1$
- 8. }
- 9. halt