
Step 3. A tree with ` leaves has an orienting path cover with at most d`/2e + 1 paths.

Proof. Note that every orienting path cover must include a path ending at every leaf. This is d`/2e
paths. So equivalently, we show that T has an orienting path cover using at most one extra path.

We construct the orienting path cover one vertex at a time. At each vertex v of the tree, we construct
two edges of each path, one directed into v and one directed out.

Label each edge at v with the number of leaves on its branch. If an edge is labeled k, we want at
most k paths on e. If we have exactly k paths on e, the paths can cover this branch, ending in every
leaf.
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It is always possible to do this on all but one of the edges at v. The construction either continues
along this edge, or in one family of special cases, starts the one extra path along this edge.
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This tree has 12 leaves and height 7 = d12e + 1, so this bound is tight.

An orienting path cover of a tree T is a set of k directed paths in T containing all of its vertices,
such that whenever two paths share an edge, they point the same direction.

Step 2. A tree has a representation with height k if and only if it has an orienting path cover with
k paths.

Proof. Each path corresponds to a unit of height in the representation (the y-coordinates of the
rectangles), and the common direction of the paths corresponds to the direction of increasing x-
coordinates of the rectangles.
The height of each rectangle is the number of paths its vertex is in. Rectangles at different heights
can be placed consistently if the directions of the paths agree.

a

b
c d

e

f

g h i j

a

b

e

c

d

f

gh

i
j

Theorem. A tree with ` leaves has height d`/2e or d`/2e + 1.

Step 1. A tree with ` leaves has height at least d`/2e.

Proof. Each leaf-rectangle sees another rectangle on only one side, so each row and column in a
representation has at most two leaves.

Heights of Trees

1. Are these the largest representations on 7 and 8 vertices? Since Kn is not an RVG for n ≥ 9,
which graphs need the largest representations on more than 9 vertices?

2. For any graph G with n vertices, area(G) ≤ 4n2. This bound is realized if all x- and y-
coordinates of all rectangles are different. How close can we get to this bound?

Open Questions

Theorem. Among graphs with n vertices, 1 ≤ n ≤ 6, the empty graphs En have largest area,
n2.

Theorem. Among graphs with n vertices, n ≥ 7, the empty graphs En do not have largest area.

Proof. The graphs K7 and K8 must be enclosed by axis-parallel rectangles of dimensions at least
7× 8 and 10× 10, and so have area 56 and 100, respectively.

If n ≥ 9 the disjoint union of K8 and n − 8 isolated vertices has area at least (n − 8 + 10)2,
greater than the area of En.

Areas of Graphs on n Vertices

Main Question
Suppose the corners of the rectangles are at integer coordinates. For a given RVG, how small
can we make its representation?

Measures of Size

• area(G): the area of the smallest axis-parallel rectangle enclosing any representation of G.

• perimeter(G): the perimeter of this smallest enclosing rectangle.

• height(G): the length of the shorter side of this smallest enclosing rectangle.

Definitions: Rectangle Visibility Graphs
Let R be a set of nonintersecting open rectangles in the plane with horizontal and vertical sides.
Construct a graph G with a vertex for each rectangle in R, and an edge for each horizontal or
vertical line of sight (zero-length lines of sight count).

G is a rectangle visibility graph (RVG) and R is its rectangle visibility representation.
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