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Clustered graph: (G,T ) where T is a tree hierarchy of clusters
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Clustered graph (G,T ) is clustered planar if there is

• a plane embedding of G and
• a representation of the clusters as topological discs

such that

• disjoint clusters are drawn as disjoint discs,
• the containment among the clusters and vertices is preserved,

and
• every edge of G crosses the boundary of each cluster at most

once.

Such a representation is called a clustered embedding of (G,T ).
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Clustered planarity

introduced by Feng, Cohen and Eades (1995)

and also by Lengauer (1989) (“hierarchical planarity”)

Problem: Is there a polynomial algorithm for testing clustered

planarity?

yes in special cases:

• c-connected clustered graphs (Lengauer, 1989; Feng, Cohen

and Eades, 1995; Cortese et al., 2008)

• almost connected clustered graphs (Gutwenger et al., 2002)

• extrovert clustered graphs (Goodrich, Lueker and Sun, 2006)

• two clusters (Biedl, 1998; Gutwenger et al., 2002; Hong and

Nagamochi, 2009)

• cycles, clusters form a cycle (Cortese et al., 2005)

• cycles, clusters form an embedded plane graph (Cortese et al.,

2009)
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(Jelı́nková et al., 2009)

• at most 4 outgoing edges (Jelı́nek et al., 2009a)

• at most 5 outgoing edges (Bläsius and Rutter, 2014)

• each cluster and its complement have at most two components

(Bläsius and Rutter, 2014)

• embedded graphs, each cluster has at most 2 components

(Jelı́nek et al., 2009b)



• cycles and 3-connected graphs, clusters of size at most 3
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• cycles and 3-connected graphs, clusters of size at most 3

(Jelı́nková et al., 2009)

• at most 4 outgoing edges (Jelı́nek et al., 2009a)

• at most 5 outgoing edges (Bläsius and Rutter, 2014)

• each cluster and its complement have at most two components

(Bläsius and Rutter, 2014)

• embedded graphs, each cluster has at most 2 components

(Jelı́nek et al., 2009b)

• embedded graphs with at most 5 vertices per face (Di Battista

and Frati, 2007)

• embedded graphs with at most 2 vertices per face and cluster

(Chimani et al., 2014)
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Main goal of our project

• improve our theoretical insight into clustered planarity

• obtain alternative, simpler algorithms

We do NOT aim for optimizing the running time.
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Hanani–Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing

in the plane; that is, every two non-adjacent edges cross an even

number of times.

Weak Hanani–Tutte theorem: (Cairns and Nikolayevsky, 2000;

Pach and Tóth, 2000; Pelsmajer, Schaefer and Štefankovič, 2007)

If a graph G has an even drawing D in the plane (every two edges

cross an even number of times), then G is planar. Moreover, G has a

plane embedding with the same rotation system as D.

recommended reading:

• M. Schaefer, Hanani-Tutte and related results (2011)

• Fulek et al., Hanani-Tutte, Monotone Drawings, and

Level-Planarity (2012)

• M. Schaefer, Toward a theory of planarity: Hanani-Tutte and

planarity variants (2013)
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Algebraic planarity algorithm

(Tutte, 1970; Wu, 1985; Schaefer, 2011)

given a graph G

• draw an arbitrary drawing D of G

• for every pair of independent edges e, f , define xD

e,f
= 1 if e and f

cross oddly and xD

e,f
= 0 if e and f cross evenly.

• by the Hanani–Tutte theorem, G is planar if and only if there is a

drawing D′ such that all xD′

e,f
= 0.

• during a continuous deformation, the vector xD changes only

when an edge passes over a vertex
• the edge-vertex switch is represented by a vector y(e,v) over Z2

• G is planar if and only if xD is a linear combination of the vectors

y(e,v)

• solve the linear system!
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• for every edge e = v1v2, we allow only those edge-vertex

switches (e, v) and edge-cluster switches (e,C) such that v

and C are children of some vertices of the shortest path

between v1 and v2 in T .

v
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a different algorithm: Gutwenger, Mutzel and Schaefer (2014)
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Main result

Theorem: (Hanani–Tutte for two clusters)

Let G = (G, (A,B)) be a flat clustered graph with two clusters A,B

forming a partition of the vertex set. If G has an independently even

clustered drawing in the plane, then G is clustered planar.

- Hanani–Tutte for c-connected clustered graphs

- weak Hanani–Tutte for two clusters

- generalization: weak Hanani–Tutte for strip planarity (Fulek, 2014)
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Sketch of the proof

given an independently even clustered embedding D of G = (G,A,B)

• modify G and D:

• create a cactus from each component of G[A] and G[B]
• make all cycles in G[A] and G[B] vertex disjoint by splitting

vertices (edge decontractions)
• fill all cycles with wheels

• apply the Hanani–Tutte theorem to the modified drawing

• flip all you can to the outer face

• remove the interiors of the wheels, contract the new edges, and

draw the rest of G

• draw two disjoint discs around A and B
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What about three clusters?



Are there other counterexamples???


